00749nas a2200145 4500008004300000245004200043210004200085260002800127520032600155100002000481700001900501700001800520700002900538856003600567 2008 en_Ud 00aNoncommutative families of instantons0 aNoncommutative families of instantons bOxford University Press3 aWe construct $\\\\theta$-deformations of the classical groups SL(2,H) and Sp(2). Coacting on the basic instanton on a noncommutative four-sphere $S^4_\\\\theta$, we construct a noncommutative family of instantons of charge 1. The family is parametrized by the quantum quotient of $SL_\\\\theta(2,H)$ by $Sp_\\\\theta(2)$.1 aLandi, Giovanni1 aPagani, Chiara1 aReina, Cesare1 avan Suijlekom, Walter D. uhttp://hdl.handle.net/1963/341701156nas a2200121 4500008004300000245007100043210006800114520075900182100002000941700001900961700001800980856003600998 2006 en_Ud 00aA Hopf bundle over a quantum four-sphere from the symplectic group0 aHopf bundle over a quantum foursphere from the symplectic group3 aWe construct a quantum version of the SU(2) Hopf bundle $S^7 \\\\to S^4$. The quantum sphere $S^7_q$ arises from the symplectic group $Sp_q(2)$ and a quantum 4-sphere $S^4_q$ is obtained via a suitable self-adjoint idempotent $p$ whose entries generate the algebra $A(S^4_q)$ of polynomial functions over it. This projection determines a deformation of an (anti-)instanton bundle over the classical sphere $S^4$. We compute the fundamental $K$-homology class of $S^4_q$ and pair it with the class of $p$ in the $K$-theory getting the value -1 for the topological charge. There is a right coaction of $SU_q(2)$ on $S^7_q$ such that the algebra $A(S^7_q)$ is a non trivial quantum principal bundle over $A(S^4_q)$ with structure quantum group $A(SU_q(2))$.1 aLandi, Giovanni1 aPagani, Chiara1 aReina, Cesare uhttp://hdl.handle.net/1963/2179