%0 Journal Article
%J Rend. Lincei Mat. Appl. 22 (2011) 387-408
%D 2011
%T Existence for wave equations on domains with arbitrary growing cracks
%A Gianni Dal Maso
%A Cristopher J. Larsen
%K Wave equation
%X In this paper we formulate and study scalar wave equations on domains with arbitrary growing cracks. This includes a zero Neumann condition on the crack sets, and the only assumptions on these sets are that they have bounded surface measure and are growing in the sense of set inclusion. In particular, they may be dense, so the weak formulations must fall outside of the usual weak formulations using Sobolev spaces. We study both damped and undamped equations, showing existence and, for the damped equation, uniqueness and energy conservation.
%B Rend. Lincei Mat. Appl. 22 (2011) 387-408
%I European Mathematical Society
%G en
%U http://hdl.handle.net/1963/4284
%1 4015
%2 Mathematics
%3 Functional Analysis and Applications
%4 -1
%$ Submitted by Maria Pia Calandra (calapia@sissa.it) on 2011-09-27T09:09:30Z\\r\\nNo. of bitstreams: 1\\r\\nDM-Lar_32_M.pdf: 223891 bytes, checksum: 7c6c66b6d21936b33ed0c21574928e24 (MD5)
%R 10.4171/RLM/606