You are here

Geometry and Mathematical Physics

∙ Integrable systems in relation with differential, algebraic and symplectic geometry, as well as with the theory of random matrices, special functions and nonlinear waves, Frobenius manifolds • Deformation theory, moduli spaces of sheaves and of curves, in relation with supersymmetric gauge theories, strings, Gromov-Witten invariants, orbifolds and automorphisms
• Quantum groups, noncommutative Riemannian and spin geometry, applications to models in mathematical physics
• Mathematical methods of quantum mechanics
• Mathematical aspects of quantum Field Theory and String 
• Symplectic geometry, sub-riemannian geometry

• Geometry of quantum fields and strings

Geometry and quantization of moduli spaces of Higgs bundles

 The ubiquity of moduli spaces of semi-stable higgs bundles on a smooth projective curve both in mathematics and physics is rather impressive. These moduli spaces have proven to be grounds of extremely fruitful interaction between the two disciplines. As an example, the techniques developed by physicists to quantize a symplectic manifold and to quantize a com- pletely integrable Hamiltonian system when applied to these moduli spaces yield remarkable mathematical results. E.

Analysis, Math-Phys, and Quantum Seminars 2014-2015

This Seminar is run within the mathematics division of SISSA as a part of SISSA's research activities on the Mathematical Methods of Quantum Mechanics, and is partially funded by the 2014-2017 FIR-MIUR grant "COND-MATH, Condensed Matter in Mathematical Physics".


Sign in