Minimal Liouville Gravity (MLG) is a theory of 2dimensional quantum gravity or string theory in dimension d<1, it is a Conformal Field Theory which is a Minimal Model of CFT (as matter) coupled with 2d surface metric via Liouville Field Theory (after Polyakov). As in any QFT one of the main object of interest is correlators of various operator fields. Though in CFT a huge algebra of symmetries allows in principle to compute correlators, in MLG it involves complicated steps such as integration over moduli space of complex curves starting fromcorrelators of four fields. Simultaneously another approach which is believed to describe the same physical problem was developed based on matrix models. It allows to efficiently compute correlation numbers through connection to integrable hierarchies and Frobenius Manifolds. Still this matrix model computation gives slightly different result. In the talk I will talk about the results of those approaches and present some direct numerical computations of those numbers.For references one can see for example (http://lanl.arxiv.org/abs/hepth/0510214v1, Moduli Integrals, Ground Ring and FourPoint Function inMinimal Liouville Gravity and http://arxiv.org/abs/1310.5659).
You are here
4point correlation numbers in Minimal Liouville Gravity.
Research Group:
Konstantin Aleshkin
Institution:
SISSA
Location:
A136
Schedule:
Thursday, July 14, 2016  14:30
Abstract:
Openings
Upcoming events

Davide Barilari
Geometric interpolation inequalities: from Riemannian to subRiemannian geometry
Thursday, November 23, 2017  11:30

Francesco Boarotto
Bounds on the loss of regularity of timeoptimal trajectories of generic control affine systems
Thursday, November 23, 2017  15:00 to 16:30

Marta Strani
Transition from hyperbolicity to ellipticity in hyperbolic systems
Monday, November 27, 2017  14:30

Monica Ugaglia
Aristotle’s Hydrostatical nonMathematical Physics
Wednesday, November 29, 2017  16:00
Recent publications

P. Antonelli; A. Michelangeli; R. Scandone,Global, finite energy, weak so...

M. Gallone; A. Michelangeli; A. Ottolini,KreinVisikBirman selfadjoin...

D. Devaud; G. Rozza,Certified Reduced Basis Metho...

M. Gallone; A. Michelangeli,Selfadjoint realisations of t...