Spectral triples are analogoues of Dirac operators on general C*algebras and play a fundamental role in noncommutative geometry. There are different regularity properties of spectral triples such as summability and conditions which allow to define a metric on the state space of the algebra. We will discuss the construction of Dirac operators with various regularity properties on crossed products and extensions in the spirit of permanence properties i.e. starting from triples on the coefficient algebra respectively the ideal and the quotient we construct a spectral triple on the crossed product respectively the extension, trying to preserve regularity. This talk is based on joint work with Andrew Hawkins, and on earlier joint work with Andrew Hawkins, Stuart White and Adam Skalski.
You are here
Constructing Spectral Triples on C*Algebras
Research Group:
Joachim Zacharias
Institution:
University of Glasgow
Location:
A136
Schedule:
Wednesday, September 13, 2017  11:00
Abstract:
Openings
Upcoming events

Matteo Gallone
Selfadjoint realisations of DiracCoulomb operators
Friday, November 24, 2017  14:00

Marta Strani
Transition from hyperbolicity to ellipticity in hyperbolic systems
Monday, November 27, 2017  14:30

Monica Ugaglia
Aristotle’s Hydrostatical nonMathematical Physics
Wednesday, November 29, 2017  16:00

Marco Manetti
Formal deformation theory in left proper model categories: the case of differential graded commutative algebras.
Thursday, November 30, 2017  16:00
Today's Lectures

Barbara Fantechi
09:00 to 11:00

Gianni Dal Maso
09:00 to 11:00

Jacopo Stoppa
11:00 to 13:00

Don Zagier
14:00 to 16:00
Recent publications

A. Michelangeli; A. Olgiati,GrossPitaevskii nonlinear dy...

G. Pitton; G. Rozza,On the Application of Reduced...

N. Antonić; M. Erceg; A. Michelangeli,Friedrichs systems in a Hilber...

G. Pitton; A. Quaini; G. Rozza,Computational reduction strate...