We will discuss several symmetrizations (Steiner, Ehrhard, and spherical symmetrization) that are known not to increase the perimeter. We will show how it is possible to characterize those sets whose perimeter remains unchanged under symmetrization. We will also characterize rigidity of equality cases. By rigidity, we mean the situation when those sets whose perimeter remains unchanged under symmetrization, are trivially obtained through a rigid motion of the (Steiner, Ehrhard or spherical) symmetral. We will achieve this through the introduction of a suitable measuretheoretic notion of connectedness, and through a fine analysis of the barycenter function for a special class of sets. These results are obtained together with several collaborators (Maria Colombo, Guido De Philippis, Francesco Maggi, Matteo Perugini, Dominik Stoger).
You are here
The rigidity problem for symmetrization inequalities
Research Group:
Filippo Cagnetti
Institution:
Sussex
Location:
A133
Schedule:
Tuesday, November 8, 2016  09:00
Abstract:
Openings
Upcoming events

Davide Barilari
Geometric interpolation inequalities: from Riemannian to subRiemannian geometry
Thursday, November 23, 2017  11:30

Francesco Boarotto
Bounds on the loss of regularity of timeoptimal trajectories of generic control affine systems
Thursday, November 23, 2017  15:00 to 16:30

Marta Strani
Transition from hyperbolicity to ellipticity in hyperbolic systems
Monday, November 27, 2017  14:30

Monica Ugaglia
Aristotle’s Hydrostatical nonMathematical Physics
Wednesday, November 29, 2017  16:00
Today's Lectures

Barbara Fantechi
09:00 to 11:00

Gianni Dal Maso
09:00 to 11:00

Jacopo Stoppa
11:00 to 13:00

Don Zagier
14:00 to 16:00
Recent publications

P. Antonelli; A. Michelangeli; R. Scandone,Global, finite energy, weak so...

M. Gallone; A. Michelangeli; A. Ottolini,KreinVisikBirman selfadjoin...

D. Devaud; G. Rozza,Certified Reduced Basis Metho...

M. Gallone; A. Michelangeli,Selfadjoint realisations of t...