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1 Lesson [09/10/2017]

A metric measure space is a triple (X, d, m), where

(X,d) is a complete and separable metric space,

(1.1
m # 0 is a non-negative Borel measure on (X, d), which is finite on balls. )
Given a complete and separable metric space (X, d), let us denote

Z(X) := Borel probability measures on (X, d), (1.2)

Cy(X) := {bounded continuous maps f : X — R}.

Definition 1.1 (Weak topology) The weak topology on & (X) is defined as the coarsest
topology on P (X) such that

P(X)o p— /fdu is continuous,  for every f € Cy(X). (1.3)

Remark 1.2 If a sequence of measures (p,, ), weakly converges to a limit measure p, then

w(Q) < lim p,(Q2)  for every Q C X open. (1.4)
n—oo
Indeed, let fi := kd(-, X\ Q) A1 € Cp(X) for £ € N. Hence fi(z) / Xa(z) for all z € X, so
that 4(Q) = supy, | fx du by monotone convergence theorem. Since v+ [ fj, dv is continuous
for any k, we deduce that v — v(2) is Isc as supremum of continuous maps, yielding ((1.4]).
In particular, if a sequence (py,), C€ Z(X) weakly converges to p € & (X), then

u(C) > 11_>7m pn(C)  for every C' C X closed. (1.5)
To prove it, just apply (1.4]) to Q :=X\ C. [

Remark 1.3 We claim that if [ fdu = [ fdv for every f € Cp(X), then u = v.
Indeed, u(C) = v(C) for any C' C X closed as a consequence of (1.5)), whence pu = v by the
monotone class theorem. [

Remark 1.4 Given any Banach space V', we denote by V' its dual Banach space. Then
P(X) is continuously embedded into Cp(X)". (1.6)

Such embedding is given by the operator sending p € 2(X) to the map Cp(X) > f — [ fdu,
which is injective by Remark and linear by definition. Finally, continuity stems from the
inequality | [ fdu| < £l (x)> which holds for any f € Cy(X). [ ]

Fix a countable dense subset (x,), of X. Let us define

A::{(a—bd(-,:pn))\/c : a,b,cGQ,nGN},
A={AV..Vf:neN fi,..., fn e A}



Observe that A and A are countable subsets of Cy(X). We claim that:
f(x) =sup {g(m) cg€eA g< f} for every f € Cp(X) and x € X. (1.8)

Indeed, the inequality > is trivial, while to prove < fix z € X and € > 0. The function f
being continuous, there exists a nbhd U of z such that f(y) > f(x) — e for all y € U. Then
we can easily build a function g € A such that g < f and g(x) > f(x) — 2. By arbitrariness
of z € X and ¢ > 0, we thus proved the validity of .

Exercise 1.5 Suppose that X is compact. If a sequence (f,), C C(X) satisfies f,(x) \, 0
for every x € X, then f, — 0 uniformly on X.

Corollary 1.6 Suppose that X is compact. Then A is dense in C(X) = Cp(X). In particular,
the space C(X) is separable.

Proof. Fix f € C(X). Enumerate {g € A : ¢ < f} as (gn)n. Call hyy :=q1 V... Vg, € A for
each n € N, thus h,(x) / f(z) for all z € X by (1.8). Hence (f — hy,)(x) \( 0 for all x € X
and accordingly f — h, — 0 in C(X) by Exercise proving the thesis. O

Remark 1.7 The converse implication holds: if Cy(X) is separable, then X is compact. W
Corollary 1.8 It holds that

/fdu = sup {/gdu ‘ gE ﬁ, g < f} for every p € Z(X) and f € Cp(X). (1.9)

Proof. Call (gn)n={g9€ A :g<f}andputh,:=g1V...Vgy€ A, thus hn(z) 2 f(x) for
all z € X and accordingly [ fdp = lim,, [ hy, dy, proving (L.9). O
We endow Z(X) with a distance 6. Enumerate {g € AN (—A) : 9llcyx) < 1} as (f;)i
Then for any p,v € Z(X) we define
[ =)

o(p,v) = Z %
=0

Proposition 1.9 The weak topology on & (X) is induced by the distance §.

. (1.10)

Proof. To prove one implication, we want to show that for any f € Cy(X) the map p+— [ fdpu
is d-continuous. Fix p,v € #(X). Given any € > 0, there exists a map g € A such that g < f

and [gdp > [ fdu—e, by Corollary Let i € N be such that f; = g/||gllc,x)- Then

[rav= [ Fauz gl [ = -2 = ~lglley0 2 00 -

whence limg(,, 1,0 [ f d(v — ) > 0 by arbitrariness of ¢ > 0, i.e. the map p + [ fdu is d-Isc.
The §-upper semicontinuity of g — [ fdu can be proved in an analogous way.

Conversely, fix u € 2(X) and € > 0. Choose N € N such that 27V < £/2. Then there is
a weak nbhd W of p such that | [ fid(u —v)| <e/4 foralli=0,...,N and v € W. Hence

iy} <1 e 1
5(M’V)SZ§ /fid(u—y)—i—' §S§+2W<8 for every v € W,
=0 i=N+1
proving that W is contained in the open d-ball of radius € centered at u. ]



Remark 1.10 Suppose that X is compact. Then C(X) = Cp(X), thus accordingly Z(X) is
weakly compact by and Banach-Alaoglu theorem. Conversely, for X non-compact this is
in general no longer true. For instance, take X := R and u, := §,. Suppose by contradiction
that a subsequence (i, )m weakly converges to some p € Z(R). For any k € N we have
that p((—k,k)) < lim,, 6y, ((—k, k)) = 0, so that u(R) = limy_,o p((—k,k)) = 0, which is
absurd. This proves that & (R) is not weakly compact. |

Definition 1.11 (Tightness) A set X C P (X) is said to be tight provided for every e > 0
there exists a compact set K. C X such that u(K;) > 1 —¢ for every p € X.

Theorem 1.12 (Prokhorov) Let X C Z(X) be fized. Then K is weakly relatively compact
if and only if K is tight.

Proof. SUFFICIENCY. Fix X C Z(X) tight, wlog KX = (u;)ien. For any n € N, choose a
compact set K, C X such that u;(K,) > 1—1/n for all i. By a diagonalization argument we
see that, up to a not relabeled subsequence, [4i| .~ cOnverges to some measure v, in duality
with Cy(K,,) for all n € N, as a consequence of Remark We now claim that:

Vp — v in total variation norm, for some measure v,

(1.11)
wi — v in duality with Cp(X).

To prove the former, recall that for any m > n > 1 one has

1 = Vil = sup{ [ 7w =) \ 7 € X, [ flloyg < 1}-

Then fix f € Cp(X) with | fllo,x) < 1. We can assume wlog that (Ky)y is increasing. We

deduce from (1.4)) that vy, (K, \ K,) < lim, i g (X'\ K,) < 1/n. Therefore

[ raen vy < i ([ pan= [ pan)+2<

proving that (vy,)y is Cauchy wrt || - ||y and accordingly the first in (L.11]). For the latter,
notice that for any f € Cp(X) it holds that

‘/fd(ui )

[ v - fd(v—un>+/X\andui—/X\andu

20 lley

Knp

s] [ =) [+ 180 I = vy +

By first letting ¢ — oo and then n — co, we obtain that lim; ‘ [ fd(pi— I/)| = 0, showing the
second in ([1.11]). Hence sufficiency is proved.

NEcEessiTY. Fix K C Z(X) weakly relatively compact. Choose € > 0 and a sequence (xy,)n,
that is dense in X. Arguing by contradiction, we aim to prove that

N;
VieN 3N;eN: M(Uél/i(xj)> 21—% Vu e K. (1.12)
7=1
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If not, there exist ig € N and (tm,)m € K such that ,um(U}":l Bl/io (zj)) < 1— € holds for
every m € N. Up to a not relabeled subsequence p,,, — p € Z(X) and accordingly

" ™ -
u(UBl/iO(xj)> < lim um(UBl/io(xj)> <1—¢ foranyne€N,

which contradicts the fact that lim, . ,u,( U?Zl B i (a:])) = u(X) = 1. This proves (1.12).
Now define K := ey U;V:ll By j;i(x5). Such set is compact, as it is closed and totally
bounded by construction. Moreover, for any u € X one has that

N;
W\ K) < S (VX0 Brten)) e L
- — 2

j=1

proving also necessity. U

Remark 1.13 We have that a set X C Z(X) is tight if and only if

¥ : X — [0, +o0], with compact sublevels, such that s := sugé/ Udu < +oo. (1.13)
ue

To prove sufficiency, first notice that W is Borel as its sublevels are closed sets. Now fix £ > 0
and choose C' > 0 such that s/C < e. Moreover, by applying Cebysév’s inequality we obtain
that C p{¥ > C} < [Wdp < s for all p € K, whence p({¥ <C}) >1-3s/C>1—c.

To prove necessity, suppose K tight and choose a sequence (K,), of compact sets such
that (X \ K,) < 1/n® for all n € N and p € K. Define ¥(z) :=inf{n € N : z € K, } for
every x € X. Clearly ¥ has compact sublevels by construction. Moreover, it holds that

1
sup/\llduzsupZ/ ‘Pdugzn—; < 00,
pneX pneX n Kn+1\Kn n n

as required. [

2 Lesson [11/10/2017]
Remark 2.1 Let u > 0 be a finite Borel measure on X. Then for any £ C X Borel one has
u(E) = sup {u(C) : C C E closed} = inf {u(Q) : QD F open}. (2.1)

To prove it, it suffices to show that the family of all Borel sets E satisfying , which we
shall denote by &, forms a o-algebra containing all open subsets of X. Then fix 2 C X open.
Call Cy, == {z € Q : d(z,X\Q) > 1/n} for all n € N, whence (C,), is an increasing sequence
of closed sets and () = lim,, u(C),) by continuity from below of p. This grants that 2 € &.

It only remains to show that & is a o-algebra. It is obvious that () € € and that € is stable
by complements. Now fix (E,), C € and € > 0. There exist (Cy), closed and (£2,,), open
such that C,, C E, C Q, and u(Q,) — 27" < u(E,) < u(Cp) + 27" for every n € N. Let



us denote Q := [, 2,. Moreover, continuity from above of p yields the existence of N € N
such that u(UneN Cn \ C’) < &, where we put C := Uivzl C,. Notice that Q is open, C is
closed and C C |J,, By, C Q. Finally, it holds that

M<©En\c> Z” E,\ Cp) e<2—+s—25
<Q\UE> ZM(Q \En)gi;:e.

n=1 n=1

This grants that | J,, B, € €, concluding the proof. [

Remark 2.2 (Total variation norm) During the proof of Theorem we needed the
following two properties of the total variation norm:

for any signed Borel

(Z2(X), | ll+y) is complete.

measure g on X, (2.2)

In order to prove them, we proceed as follows. Given a signed measure p, let us consider its
Hahn-Jordan decomposition p = pu+—p~, where u* are non-negative measures with u* L p—,
which satisfy p(P) = p*(X) and u(P°¢) = —u~(X) for a suitable Borel set P C X. Hence by
definition the total variation norm is defined as

lpelly = p(X) + 0 (X). (2.3)

Such definition is well-posed, since the Hahn-Jordan decomposition (u™, ™) of p is unique.

To prove the first in ([2.2)), we start by noticing that [ fdu < [|f|d(p™ + 1) < |pllvy
holds for any f € Cy(X) with || f]| c,x) < 1, proving one inequality. To show the converse

one, let € > 0 be fixed. By Remark we can choose two closed sets C C P and ¢’ C P¢
such that g™ (P\ C),u= (P¢\ C') <e. Call f, := (1 —nd(, C’))+ and gy, := (1 —nd(',C’))Jr
so that f, " X¢ and g, \( X¢v as n — oo. Now define h,, := f,, — gp,. Since |hy| < 1, we have
that (hn)n C Cy(X) and [|hnl|¢,(x) < 1 for every n € N. Moreover, it holds that

: T +_ - _ + -
Jim [y dp = lim [/fndu /fndu /gndu +/gndu }
= (C) + p~(C") > p(P) + p~ (P) =2 = |||y — 2.

By arbitrariness of £ > 0, we conclude that lim,, [ h, dp = |||y, proving the first in (2.2).
To show the second, fix a sequence (fin,), € Z(X) that is || - [|[1,-Cauchy. Notice that

‘,u(E)‘ <||lp|lyy  for every signed measure p and Borel set E C X.
Indeed, |u(E)| < p(E) + p~ (E) < pt(X) 4+ 5~ (X) = ||pflry- Therefore

‘,un(E) — ,um(E)‘ <||pn — tmllyy  for every n,m € N and E C X Borel. (2.4)



In particular, (,un(E))n is Cauchy for any E C X Borel, so that lim,, u,(E) = L(E) for some
limit L(E) € [0,1]. We thus deduce from (2.4) that

Ve>0 3Jn.€N: |L(E)—pn(E)|<e VYn>n. VECX Borel (2.5)

We claim that L is a measure. Clearly, L()) = 0 and L(X) = 1. For E, F Borel with ENF = (),
we have that L(E U F) = lim,, pn,(E U F) = limy, p,(E) + lim, p,(F) = L(E) + L(F'), which
grants that L is finitely additive. To show that it is also o-additive, fix any sequence (E;);
of pairwise disjoint Borel sets. Let us call Uy := Uf\il E; for all N € N and U := | J;2, E;.
Given any € > 0, we infer from that for any n > n. one has

i [L(U7) — LON)| < [LO) = )] + T [pin () = pin ()| + T (U) = L(OW)|

N—oo

<2e+ lim |pn(U) = pn(Un)| = 2e,
N—o0

where the last equality follows from the continuity from above of u,. By letting ¢ — 0 in the
previous formula, we thus obtain that L(U) = limy L(Un) = -2, L(E;), so that L € 2 (X).
Finally, we aim to prove that lim,, |L — p,||1 = 0. For any n € N, choose a Borel set P,, C X
satisfying (L — pn)(Pn) = (L — ) T(X) and (L — pp)(PS) = —(L — )~ (X). Now fix € > 0.
Hence ([2.5) guarantees that for every n > 7. it holds that

IL = pnllry = (L= ) (Pr) = (L= ) (P) = [(L = pi) (Po) | + |(L = pn) (P)] < 2.
Therefore y,, converges to L in the || - ||\-norm, concluding the proof of (2.2]). [ |

We now present some consequences of Theorem [1.12

Corollary 2.3 (Ulam’s theorem) Any p € Z(X) is concentrated on a o-compact set.

Proof. Clearly the singleton {u} is weakly relatively compact, so it is tight by Theorem m
Thus for any n € N we can choose a compact set K, C X such that u(X\ K,) < 1/n. In
particular, 4 is concentrated on | J,, Ky, yielding the thesis. O

Corollary 2.4 Let p € P(X) be given. Then p is inner regular, i.e.
w(E) = sup {,u(K) : KCE compact} for every E C X Borel. (2.6)

In particular, p is a Radon measure.

Proof. By Corollary there exists an increasing sequence (K, ), of compact subsets of X
such that lim,, M(X \ Kn) = 0. Any closed subset C of X that is contained in some K, is
clearly compact, whence

w(E) = lim p(ENKy,) = lim sup {u(C) : C C ENK, closed}
<sup{u(K) : K C E compact} for every E C X Borel,

proving (2.6]), as required. O



Given any function f: X — R, let us define

Lip(f) := sup ’f(z)(; ;)(y)} € [0, +o0). (2.7)

We say that f is Lipschitz provided Lip(f) < +oo and we define
LIP(X):={f: X = R : Lip(f) < o0},

LIPys(X) := {f € LIP(X) : spt(f) is bounded} C Cy(X). (2:8)

We point out that continuous maps having bounded support are not necessarily bounded.

Proposition 2.5 (Separability of LP(u) for p < o) Let p€ Z(X) and p € [1,00). Then
the space LIPys(X) is dense in LP(u). In particular, the space LP(u) is separable.

Proof. First, notice that LIP;s(X) C L*(u) € LP(u). Call € the LP(u)-closure of LIPs(X).
STEP 1. We claim that {Xc : C C X closed bounded} is contained in the set €. Indeed,
called f, == (1 — nd(-,C’))Jr € LIPps(X) for any n € N, one has f, — X¢ in LP(u) by
dominated convergence theorem.

STEP 2. We also have that {XE  BFCX Borel} C %. Indeed, we can pick an increasing
sequence (Cy,),, of closed subsets of E such that p(E) = lim, u(Cy), as seen in (2.1). Then
one has that |[Xg — Xc, || 1p() = #(E\ Cn)Y? — 0, whence Xg € € by STEP 1.

STEP 3. To prove that LP(u) C ¥, fix f € LP(u), wlog f > 0. Given any n,i € N, let us
define E,; := f~'([i/2", (i + 1)/2"[). Observe that (Ey;); is a Borel partition of X, thus it
makes sense to define f,, := >, 127" XE,, € LP(u). Since f,(x) 7 f(x) for p-a.e. x € X, we
have f,, — f in LP(u) by dominated convergence theorem. We aim to prove that (f,), C €,
which would immediately imply that f € €. Then fix n € N. Notice that f,, is the LP(u)-limit
of [N .= Zf\i 1927 " XE,, as N — 00, again by dominated convergence theorem. Given that
each f € € by STEP 2, we get that f,, is in € as well. Hence LIP,s(X) is dense in LP(u).
STEP 4. Finally, we prove separability of LP(u). We can take an increasing sequence (K ),
of compact subsets of X such that the measure p is concentrated on J,, K, by Corollary
Since Xk, f — f in LP(u) for any f € LP(u), we see that

U {fell(u) : f=0 prae in X\ K,} isdensein LP(u).
neN

=S,
To conclude, it is sufficient to show that each S, is separable. Observe that C'(K,,) is separable
by Corollary thus accordingly its subset LIPy;(Ky,) is separable with respect to || - ||, ,)-
In particular, LIPy,(Kpy) is separable with respect to || - |[(,,). Moreover, LIPy(Ky) is dense
in LP (u| Kn) & S, by the first part of the statement, therefore each .S, is separable. O

3 Lesson [16/10/2017]

We equip the space C([0, 1], X) of all continuous curves in X with the sup distance:

d(v,79) == e d(v, %) for every v,% € C([0,1],X). (3.1)
S )



Proposition 3.1 Let (X,d) be a complete (resp. separable) metric space. Then the metric
space (C’([O, 1],X),g) is complete (resp. separable).

Proof. COMPLETENESS. Take a d-Cauchy sequence (y™),, € C([0, 1], X). Hence for any & > 0
there exists n. € N such that d(y",~") < ¢ for all n,m > n.. In particular, ("), is d-Cauchy
for each ¢ € [0, 1], so that lim,, 7{* = 7 with respect to d for a suitable v, € X, by completeness
of (X,d). Given any € > 0 and n > n., we have sup, d(7}*,v:) < sup, lim,, d(7{*, /") < € and

limd(vs,7) < lim [d(vs,75) +d(5,97) +d(0' )] < 2e +limd(vg,y)") = 2¢ VYt € [0,1],
s—t s—t s—t

proving that + is continuous and lim, d(y",~v) = 0. Then (C([0,1],X),d) is complete.
SEPARABILITY. Fix (x,,), C X dense. Given k,n € Nand f: {0,...,n—1} — N, we let

A g = {’y e C([0,1],X) ‘ d(v, zp) < 1/2% Vi=0,...,n—1,t€ [i/n,(i+1)/n] }
We then claim that
UAk,n,f =(C([0,1],X) for every k € N,
nf , (3.2)
d(v,79) < Py for every v,¥ € Agn. s
To prove the first in , fix k € N and v € C([0,1],X). Since ~ is uniformly continuous,
there exists § > 0 such that d(y,vs) < 1/2%+! provided t, s € [0, 1] satisfy |t — s| < §. Choose

any n € N such that 1/n < §. Since (x,), is dense in X, for every i = 0,...,n — 1 we can
choose f(i) € N such that d(z (), vi/n) < 1/2F1. Hence for any i = 0,...,n — 1 it holds that

1 1 1+ 1
n )

d(ves 2 pi)) < d(vs Vign) + dVigns Tp)) < ok for every t € [n,

proving that v € Ay, y and accordingly the first in . To prove the second, simply notice
that d (e, 5¢) < d(y, p))+d(@ gy, ) < 1/28 1 foralli =1,...,n—1land t € [i/n, (i+1)/n].

In order to conclude, pick any v%™f A, s for every k,n, f. The family (yk’”’f)kjnvf,
which is countable by construction, is d-dense in C([0,1],X) by (3.2)), giving the thesis. [

We say that C([0,1],X) is a Polish space, i.e. a topological space whose topology comes
from a complete and separable distance.

Remark 3.2 Any open subset of a Polish space is a Polish space. |

Exercise 3.3 Given any two topological spaces Y and Z, we define the compact-open topology
on C(Y,Z) as follows: for K C'Y compact and 2 C Z open we denote

Vi = {f eC(Y,Z) : f(K)C Q},

then the compact-open topology is defined as the one that is generated by all Vg q.
Prove that d induces the compact-open topology on C(]0, 1], X).



Definition 3.4 (Absolutely continuous curves) We say that a curve v : [0,1] — X is
absolutely continuous, briefly AC, provided there exists a map f € L'(0,1) such that

t
d(ye,7s) < / f(r)ydr  for every t,s € [0, 1] with s < t. (3.3)
S
Clearly, all absolutely continuous curves are continuous.
Remark 3.5 If X = R then this notion of AC curve coincides with the classical one. |

Theorem 3.6 (Metric speed) Let v be an absolutely continuous curve in X. Then

d(Veths7t)

) for a.e. t € [0,1]. (3.4)

|| =1
|| o
Moreover, the function ||, which is called metric speed of v, belongs to L'(0,1) and is the

minimal function (in the a.e. sense) that can be chosen as f in (3.3).

Proof. Fix (zp)n € X dense. We define gy, (t) := d(~y, xy,) for all ¢ € [0, 1]. Then

t
|gn(t) = gn(s)| < d(ye,7s) < / f(r)dr for every t,s € [0, 1] with s < ¢, (3.5)
S

showing that each g, : [0,1] — R is AC. Hence g, is differentiable a.e. and by applying the
Lebesgue differentiation theorem to (3.5) we get that |g/,(t)| < f(t) for a.e. t € [0,1]. Let us
call g := sup,, ¢, so that g € L'(0,1) with |g| < f a.e.. Moreover, one has that

d(7¢,7s) = sup [gn(t) — gn(s)] for every t,s € [0, 1]. (3.6)
neN
Indeed, d(7y,7s) > [gn(t) — gn(s)] for all n by triangle inequality. On the other hand, given
any € > 0 we can choose n € N such that d(x,,7s) < €, whence g, (t) — gn(s) > d(y,7s) —2¢€.
We thus deduce from (3.6)) that g can substitute the function f in (3.3]), because

t t
d(ve,7vs) = sug/ gh(r)dr < / g(r)dr  for every t,s € [0,1] with s < ¢. (3.7)
ne s S

In order to conclude, it only remains to prove that g is actually the metric speed. By applying
Lebesgue differentiation theorem to , we see that limg ¢ d(y4,vs) /|t — 8| < g(¢) holds for
almost every ¢ € [0,1]. Conversely, d(v,7vs) > gn(t) — gn(s) = fst gr,(r)dr holds for all s < ¢
and n € N by triangle inequality, so lim__,, d(v¢,7s)/|t — s| > g,,(¢) is satisfied for a.e. t € [0, 1]
and for every n € N by Lebesgue differentiation theorem. This implies that

—d(vys) o . d(ves) ,
t) > lim ————= > lim ———= > supg¢,,(t) = g(¢ for a.e. t € [0, 1],
g(t) = lim s =M _negg() 9(t) [0, 1]
thus concluding the proof. O



We define the kinetic energy functional KE : C([0,1],X) — [0, +0o0] as follows:

S Bel?dt if v is AC,
+00 if v is not AC.

KE(y) := {

Proposition 3.7 The functional KE is d-lower semicontinuous.

Proof. Fix a sequence (7"), C C([0,1],X) that d-converges to some v € C([0,1],X). We
can take a subsequence (7"*); satisfying limj KE(7™*) = lim,, KE(y"). Our aim is to prove
the inequality KE(y) < limy KE(y™). The case in which limy KE(7™) = +oc0 is trivial, so

NnE?

suppose that such limit is finite. In particular, up to discarding finitely many ~™*’s, we have

that all curves v are absolutely continuous with (|5"#[), € L?(0,1) bounded. Therefore, up
to a not relabeled subsequence, || converges to some limit function G € L?(0,1) C L'(0,1)
weakly in L?(0,1). Given any t,s € [0, 1] with s < ¢, we thus have that

t t
d(ye,7s) = Jim d(y™, 7)< lim [ 30 dr = Tm (3] X)) 12 =/ G(r)dr,

k—ooJs

which grants that v is absolutely continuous with |4 < G a.e. by Theorem Hence

1 1
KE() = [ [ dt < Gl < lim [ |57 Pt = lim KEO™),
0 k—o0 J0 k—o0

proving the thesis. O

Exercise 3.8 Prove that

n—1 2
d(v. .
KE(v) = sup M holds for every v € C(]0, 1], X). (3.9)

O=to<...<tn=1 ‘=g tit1 =i
Definition 3.9 (Geodesic curve) A curve v : [0,1] — X is said to be a geodesic provided
d(ve,7vs) < |t — s|d(y0,71)  holds for every t,s € [0, 1]. (3.10)
Clearly, any geodesic curve is continuous.
Proposition 3.10 Let v € C([0,1],X) be fizred. Then the following are equivalent:
i) 7 is a geodesic,

ii) d(ve,7s) = [t = sld(v0,71) for every t,s € [0, 1],

iii) v is AC, its metric speed || is a.e. constant and d(~p,7v1) = fol |9¢| dt,

iv) KE(7) = d(v0,71)%.
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Proof. 1) = ii) Suppose that d(v¢,vs) < (t — s) d(70,71) for some 0 < s <t <1, then

d(70,7) < d(70,7s) +d(7s,71) +d(y,71) < [t + (£ = 5) 4+ (1 = )] d(70,71) = d(70, M),

which leads to contradiction. Hence d(vy¢,7s) = |t — s|d(v0,71) for every t,s € [0, 1].

ii) = iii) Observe that d(y,7s) = (t—s) d(y0,71) = fst d(0,7v1) dt holds for every ¢, s € [0, 1]
with s < ¢, whence the curve 7 is AC. Moreover, || = limp,_0 d(7Ve+n,7)/|h| = d(70, 71) holds
for a.e. t € [0,1], thus accordingly fol |9¢| dt = d(y0,71)-

iii) = iv) Clearly || = d(y0,71) for a.e. t € [0,1], hence KE(y fo |42 dt = d(v0,71)%
iv) = i) Notice that the function (0, +00)? > (a,b) — a?/b is convex and 1-homogeneous,
therefore subadditive. Also, 7 is AC since KE(7y) < co. Then for all t,s € (0,1) with s < ¢

one has
d(v0,71)? / 5 | dr+/ Mzdwr/ 5| dr

> ([ ar) 2 ([ ) s ()

d s d(7s, d(s,
> (70, 7s)* n (75, 7)? N (v, 71)°
s t—s 1—1t

_ [d00.7) + d(3. ) +d ()]
= s+ (t—s)+(1—1)

2 d(707/)/1)27

where the last line follows from the subadditivity of the function (0, +00)? 3 (a,b) — a?/b.
Hence all inequalities are actually equalities, which forces d(v¢,7s) = (t — s) d(v0, 71)- O

Let us define
Geo(X) := {7 € C([0,1],X) : v is a geodesic}. (3.11)

Since uniform limits of geodesic curves are geodesic, we have that Geo(X) is d-closed.

Definition 3.11 (Geodesic space) We say (X,d) is a geodesic space provided for any pair
of points x,y € X there exists a curve v € Geo(X) such that vy = x and v1 = y.

Proposition 3.12 (Kuratowski embedding) Let (X,d) be complete and separable. Then
there exists a complete, separable and geodesic metric space (f(, a) such that X is isometrically
embedded into X.

Proof. Fix (x,)n, C X dense. Let us define the map ¢ : X — ¢*° as follows:
W) == (d(z,z,) — d(mo,xn))n for every x € X.

Since |d(z, zn) — d(z0, )| < d(z, x) for any n € N, we see that () actually belongs to (>
for every x € X. By arguing as in the proof of Theorem precisely when we showed (3.6)),
we deduce from the density of (z), in X that

HL($> — L(y)HEoo = sup }d(x, xn) — d(y, xn)‘ =d(z,y) holds for every z,y € X,
neN

11



which proves that ¢ is an isometry. The Banach space £*° is clearly geodesic, but it is not
separable, so that we cannot just take X = ¢>°. We thus proceed as follows: call Xy := ¢(X)
and recursively define X,,11 := {)\x +(1-XNy : A€ [0,1], z,y € Xn} for every n € N.
Finally, let us denote X := clyoo (U, X5, which is the closed convex hull of X¢. Note that X is
separable, so that Xy and accordingly X are separable, and that ¢ : X — X is an isometry.
Since X is also complete and geodesic, we get the thesis. O

4 Lesson [18/10/2017]

Consider two metric spaces (X,dx),(Y,dy) and a Borel map T': X — Y. Given a Borel
measure p > 0 on X, we define the pushforward measure Typ as

Tyu(E) := pu(T~H(E)) for every E C X Borel. (4.1)
It can be readily checked that T,u is a Borel measure on Y.

Remark 4.1 In general, if i is a Radon measure then Ty is not necessarily a Radon measure.
However, if u is a finite measure then T, is a Radon measure by Corollary |

Example 4.2 Consider the projection map R? > (x,y) + 7'(x,y) := x € R. Given any
Borel set E C R, it holds that 7} £?(E) = 0 if L1(F) = 0 and 71 £2(F) = +o0 if L}(E) > 0.

Proposition 4.3 Let v > 0 be a Borel measure on Y. Then v = Ty if and only if
/fdy = /f oTdu  for every f: X — [0,400] Borel. (4.2)

We shall call (4.2)) the change-of-variable formula.
Proof. Given E C'Y Borel and supposing the validity of (4.2)), we have that

v(E) —/XEdV—/XEOTdM—/XTl(E) dp = p(T~H(E)) = Tupu(E),

proving sufficiency. On the other hand, by Cavalieri’s principle we see that

/de*u=/0+ooT*u({fZt})dtz/Omu({foth})dt:/fonu

is satisfied for any Borel map f: X — [0, +00], granting also necessity. 0

Remark 4.4 Observe that

T=T prae. = Tou =T, (4.3)
f = JE (T*,u)—a.e. — f ol = f ol pu-a.e.. )

12



Moreover, if v > 0 is a Borel measure on Y satisfying T, < Cv for some C' > 0 and p € [1, o0],
then the operator LP(v) o f +— foT € LP(u) is well-defined, linear and continuous. Indeed,
we have for any f € LP(v) that

[iserpan=[1sreran® [ipazp<c [irra
In particular, the operator LP(Tip) > f +— foT € LP(u) is an isometry. [

Remark 4.5 Consider f € C1(R") and G € C(R"). Then G > |V | if and only if

1
F() - F(0)] < /0 Gly)lildt  for every v € C1([0, 1], R"). (4.9

This means that the map |V f| can be characterised, in a purely variational way, as the least
continuous function G : R™ — R for which (4.4) is satisfied. [

For every t € [0, 1], we define the evaluation map at time ¢t as

er: C([0,1],X) — X,

Y Yt

(4.5)

It is clear that each function e; is 1-Lipschitz.

Definition 4.6 (Test plan) A measure m € 2(C([0,1],X)) is said to be a test plan on X

provided the following two properties are satisfied:
i) There ezists a constant C > 0 such that (e¢)m < Cm for every t € [0, 1].
ii) It holds that [KE(y)dm(v) = [ [ |4|? dm(y)dt < +oc.

The least constant C' > 0 that can be chosen in i) is called compression constant of 7 and is
denoted by Comp().

It follows from ii) that test plans must be concentrated on absolutely continuous curves.

Definition 4.7 (Sobolev class) The Sobolev class S?(X) is defined as the space of all Borel
functions f : X — R that satisfy the following property: there exists a function G € L?(m)
with G > 0 such that

1
/ | f(1) = f(0)| dm(7) < /0 /G(*yt)]*'yt] dm(y)dt  for every test plan w on X.  (4.6)

Any such G is said to be a weak upper gradient for f.
Remark 4.8 We claim that

foe  — foege Li(mw) for every f € S*(X). (4.7)
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In order to prove, it suffices to notice that Holder inequality gives

</01/G(%)\%\7r(v)dt>2 < (/Ol/a%etdwdt) (/01/ i w(r)at)

1
< Comp(m) Gl | [ Pl dm(a) e < +oc.
In particular, the map L?(m) > G folf G(ve)|¥¢| dm () dt is linear and continuous. [

Proposition 4.9 Let f € S*(X) be fived. Then the set of all weak upper gradients of f is
closed and convex in L*(m). In particular, there exists a unique weak upper gradient of f

having minimal L?(m)-norm.

Proof. Convexity is trivial. To prove closedness, fix a sequence (Gy,), C L?(m) of weak upper
gradients of f that L?(m)-converges to some G € L?(m). Hence Remark 4.8 grants that

1 1
/ Fm) — Fl0)| dm(y) < /O / G () el dre () dt - /O / G()el dre () dt,

proving that G is a weak upper gradient of f. Hence the set of weak upper gradients of f is
closed. Since L?(m) is Hilbert, even the last statement follows. O

Definition 4.10 (Minimal weak upper gradient) Let f € S?>(X). Then the unique weak

upper gradient of f having minimal norm is called minimal weak upper gradient of f and is

denoted by |Df| € L?(m).

Proposition 4.11 Let the sequence (fn)n C S*(X) satisfy fo(x) — f(x) for a.e. x € X, for
some Borel map f: X — R. Let G, € L*(m) be a weak upper gradient of f, for every n € N.
Suppose that G, — G weakly in L*(m), for some G € L*(m). Then f € S*(X) and G is a
weak upper gradient of f.

Proof. First of all, it holds that f,(71) — fu(70) — f(m1) — f(70) for m-a.e. 7. Moreover,
the map sending H € L?(m) to fol [ H(v)|A|dm(vy)dt is strongly continuous and linear by
Remark thus it is also weakly continuous. Hence Fatou’s lemma yields

1
[ 1700 = s6ol dn() < im [ 1fam) = )| dm() < lim [ [ Gutao)tiel dm(a) e
n—00 0
1
= | [cenplantya

which shows that f € S?(X) and that G is a weak upper gradient for f. O

Example 4.12 Let us fix a measure p € & (X) with p < Cm for some C' > 0. Let us denote
by Const : X — C([0,1],X) the function sending any point € X to the curve identically
equal to x. Then Const,u turns out to be a test plan on X.
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Exercise 4.13 Given a metric space (X,d) and « € (0,1), we define the distance d,, on X as
do(z,y) :=d(z,y)* for every z,y € X.

Prove that the metric space (X, d, ), which is called the snowflaking of (X, d), has the following
property: if a curve « is d,-absolutely continuous, then it is constant.

Now consider any Borel measure m on (X, d). Since d and d, induce the same topology
on X, we have that m is also a Borel measure on (X,d,). Prove that any Borel map on X
belongs to S?(X, d,, m) and has null minimal weak upper gradient.

Definition 4.14 (Sobolev space) We define the Sobolev space W12(X) associated to the
metric measure space (X,d, m) as WhH2(X) := L?(m) N S%(X). Moreover, we define

9 2
£ w2y = (!\f\\%2<m) + H!Df\HLz(m)) for every f € W (X). (4.8)
Remark 4.15 It is trivial to check that

ID(Af)| = |\|Df|  for every f € S*(X) and A € R,

4.9
|D(f +9)| < |Df|+|Dg| for every f,g € S*(X). o

In particular, S?(X) is a vector space, so accordingly W12(X) is a vector space as well. W

Theorem 4.16 The space (W'*(X), || - ||W172(X)) is a Banach space.

Proof. First of all, we claim that S?>(X) > f H|Df]HL2(m) € R is a seminorm: it follows
by taking the L?(m)-norm in (£.9). Then also || - [wi2(x) is a seminorm. Actually, it is a
norm because || f{|y12(x) = 0 implies || f|| 12, = 0 and accordingly f = 0. It thus remains
to show that W12(X) is complete. To this aim, fix a Cauchy sequence (f,), € W12(X). In
particular, such sequence is L?(m)-Cauchy, so that it has an L?(m)-limit f. Moreover, the
sequence (|D fn\)n is bounded in L?(m). Hence there exists a subsequence (fy, ); such that

|Dfpn,| = G  weakly in Lz(m), for some G € LQ(m)7 ( )
4.10
Jrg () i) f(x) for m-a.e. z € X.

Then Proposition grants that f € W5H2(X) and that G is a weak upper gradient for f.
Finally, with a similar argument we get |||D(fn, — f)|HL2(m) < lim,,, ||[D(fn), — f”m)|HL2(m)
for every k € N. By recalling that (f,), is W1?(X)-Cauchy, we thus conclude that

T 1D~ Dl y < 0 tim (1D~ Sy =0

proving that f,, — f in W1%(X), which in turn grants that f, — f in WH2(X). O

Remark 4.17 In general, W2?(X) is not a Hilbert space. For instance, W12(R",d, L") is
not Hilbert for any distance d induced by a norm not coming from a scalar product. |
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Theorem 4.18 Let f : X — R be a Borel map. Let G € L*(m) satisfy G > 0. Then the

following are equivalent:

i) f€S%X) and G is a weak upper gradient of f.

ii) For every test plan m on X, we have that the map t — foe, — foeg € L'(m) is AC.
For a.e. t € [0,1], there exists the strong L' (m)-limit of (f oesyn — foe))/h as h — 0.
Such limit, denoted by Derr(f), € L*(w), satisfies

|Derx(f),|(7) € G(v)l3|  for w-a.e. v and a.e. t € [0,1]. (4.11)

iii) For every test plan , we have for w-a.e. 7y that f o~y belongs to WH1(0,1) and that the
inequality |0;(f o )| < G(ye)|3| holds for a.e. t € [0,1].

If the above hold, then Dery(f),(v) = 0:(f o yt) for w-a.e. v and a.e. t € [0, 1].
Remark 4.19 One can deduce from ii) of Theorem that
G1, Gy weak upper gradients for f = min{G1, G2} weak upper gradient for f. (4.12)

In particular, we have that the minimal weak upper gradient is minimal also in the m-a.e.
sense, i.e. |Df| < G holds m-a.e. for every weak upper gradient G of f. |

5 Lesson [23/10/2017]

Remark 5.1 In giving Definition [.7] we implicitly used the fact that
C([0,1],X) x [0,1]  (7,t) —> G(7)|¥| is Borel. (5.1)

The map e : C(]0,1],X) x [0,1] — X sending (v,t) to v can be easily seen to be continuous,
whence G o e is Borel. Moreover, define the map ms: C([0,1], X) x [0,1] — [0, +o0] as

(7.1) |9e| = limp—0 d(Vetn, )/ | R if such limit exists finite,
ms(7y,t) 1= .
7 +00 otherwise.

We claim that ms is Borel. To prove it, consider an enumeration (ry,), of QN (0, +00). Given
any €,h > 0 and n € N, we define the Borel sets A(e,n,h) and B(e,n) as follows:

Ale,n, h) ::{('y,t) : ‘d(%*h’%)—m <s}, Ble,n):i= | ) Alenh).

’h’ 0<6€Q he(0,6)NQ

Hence limy,,0 d(Ve+r,71)/|R| exists finite if and only if (v,?) € (;eny Unen B(277,n). Now let
us call C(j,n) :== B(279,n)\ U,,, B(277,1) for every j,n € N. Then the map f;, defined as

T if (y,t) € C(j,n) for some n € N,

fi(y,t) = { +oo if (1,1) ¢ U, C4,n),

is Borel by construction. Given that f;(v,?) , ms(~y,t) for every (v,t), we thus deduce that
the function ms is Borel. Since the map in (5.1]) is nothing but G o e ms, we finally conclude
that (5.1]) is satisfied. [
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Proposition 5.2 Let (f,), C S?*(X) be given. Suppose that there ewists f : X — R Borel
such that f(x) = lim, fn(z) for m-a.e. x € X. Then H|Df]”L2(m) <lim, H|Df”|HL2(m)'

In particular, if a sequence (gn)n € WH2(X) is L?(m)-converging to some limit g € L?(m),
then it holds that |HDg|HL2(m) < lim,, H]Dgn|HL2(m).

Proof. The case lim,, H |D fo| H L2(m) = 00 is trivial, then assume that such liminf is finite. Up
to subsequence, we can also assume that such liminf is actually a limit. This grants that the
sequence (|D f”Dn is bounded in L?(m), thus (up to subsequence) we have that |Df,| — G
weakly in L?(m) for some G € L?(m). Hence Proposition grants that f € S*(X) and G
is a weak upper gradient for f, so that H\Df|HL2(m) < Gl 2y < lim, H\Dfn]HLQ(m).

For the last assertion, first take a subsequence such that lim,, H |Dgn| H L2(m) is actually a
limit and then note that there is a further subsequence (g, )r such that g(x) = limy gy, (x)

holds for m-a.e. x € X. To conclude, apply the first part of the statement. ]

Example 5.3 Suppose to have a Borel map F': Xx [0, 1] — X, called flow, with the following

properties: there exist two constants L, C' > 0 such that

F(x): t— F(x) is L-Lipschitz for every z € X,

(5.2)
(Fy)sm < Cm  for every t € [0, 1].

The second requirement means, in a sense, that the mass is well-distributed by the flow F'.
Now consider any measure p € #(X) such that p < c¢m for some ¢ > 0. Then

7 := (F).p s a test plan on X. (5.3)

Its verification is straightforward: (e¢).m = (et)«(F)spt = (Fi)ept < ¢ (Fi)m < c¢Cm shows
the first property of test plans, while the fact that ‘Ft(a:)‘ < L holds for every z € X and
almost every t € [0, 1] grants the second one. Therefore ([5.3)) is proved. [

Proposition 5.4 Let 7 be a test plan on X and p € [1,00). Then for every f € LP(m) the
map [0,1] 5t foe, € LP(m) is continuous.
Proof. First of all, one has that [ |foe;[P dm < Comp(w) [ |f|P dm for every f € LP(m). Given
any g € Cy(X) N LP(m), it holds that |g(vs) — g(w)|” — 0 as s — t for every v € C([0,1],X)
and |[goes —goelP < 2 HQHIL(’JZ,(X) € L>®(m), so that lims ‘g oes; —go et|pd7r = 0 by
dominated convergence theorem. This guarantees that

lim || f o es — f o el 1y () < lim [Hf oes—goes| o tllgoer—fo etHLP(‘rr)}

< 2Comp(7r)1/p|’f—gHLp(m)7

whence [|f o es — foetl|fpr) — 0 as s — ¢ by density of C(X) N LP(m) in LP(m), which can
be proved by suitably adapting the proof of Proposition O
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Let t,s € [0, 1] be fixed. Then we define the map Restr; : C([0,1],X) — C([0, 1], X) as
Restr; (), := Y(1—ry4rs for every v € C([0,1],X) and r € [0, 1]. (5.4)
Exercise 5.5 Prove that the map Restr; is continuous.

Lemma 5.6 Let 7 be a test plan on X. Then

i) for any Borel set T C C([0,1],X) that satisfies w(T') > 0, it holds that 7(T')~* | s a
test plan on X,

ii) the measure (Restr}).m is a test plan on X.

Proof. In order to prove i), just observe that

1)« (7 ()~ W’F) < ()7t (ep)wm < Comp(m) w(I) L m,

//"Yt‘Q 7"|F)( //]’deﬂ' )dt < +oo.

To prove ii), notice that if v € C([0,1],X) is absolutely continuous, then o := Restr{(y) is
absolutely continuous as well and satisfies |0 = |s — t[|¥(1—p)¢4rs| for a.e. v € [0,1]. Hence

(er)«(Restr}).m = (e, o Restry)«m = (€(1—p)t4rs)«™ < Comp(m) m,
1 1
/ /]dr\Qd((Restrf)*ﬂ)(a) dr <|s—t| / / 4% dae () dr < 400,
0 0

which concludes the proof of the statement. O

Proposition 5.7 Let f € S?(X) be given. Consider a weak upper gradient G € L*(m) of f.
Then for every test plan ® on X and for every t,s € [0,1] with s < t it holds that

£ () — Fs)| < / GOyl dr  for m-ace. v € C([0,1],X). (5.5)

Proof. We argue by contradiction: suppose the existence of ¢,s € [0,1] with s < ¢ and of a
Borel set I' € C([0,1], X) with 7w(T") > 0 such that |f(y) — f(7s)| > fst G(v+)|5r| dr holds for
every v € I'. Lemma grants that the measure 7 := (Restr’), (w(T) ™! 7r|F) is a test plan
on X, thus accordingly

1
-1 /F £ — F)] de() = / F(o1) — Flon)| dit(o) < /0 / G(0)\6] d7 (o) dr
-1 / /F G v dre() dr

which leads to a contradiction. Therefore the thesis is achieved. O
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Fix a Banach space B and a metric measure space (X, d, p) with p € 2(X).
A map f: X — B is said to be simple provided it can be written as f = Y "' | Xp, v;, for
some v1,...,v, € B and some Borel partition Fy, ..., E, of X.

Definition 5.8 (Strongly Borel) A map f : X — B is said to be strongly Borel (resp.
strongly p-measurable) provided it is Borel (resp. p-measurable) and there exists a separable
subset V' of B such that f(x) € V for p-a.e. x € X. This last condition can be briefly expressed
by saying that f is essentially separably valued.

Lemma 5.9 Let f: X — B be any given map. Then f is strongly Borel if and only if it is
Borel and there exists a sequence (fy)n of simple maps such that limy, || fo(z) — f(z)||z = 0 is
satisfied for p-a.e. x € X.

Proof. SUFFICIENCY. Choose V;, C B separable such that f,,(z) € V,, for p-a.e. z € X. Then
the set V := (J,, Vy, is separable and f(x) € V for p-a.e. x € X, whence f is strongly Borel.
NECESSITY. Assume wlog f(z) € V for every x € X. Choose a dense countable subset (vy,)y
of V' and notice that V' C |, B:(vy) for every € > 0. We define P. : V — (vy,), as follows:

P. = Z Xc(en) Un,  Where C(g,n) = (VN Bz(vn)) \ U B (v;). (5.6)

neN <n

Let us call f. := P.of. Since || P-(v) — UHB < eforallv € V, we have that || f-(z) — f(:c)H]B <e
for all x € X, so that f can be pointwise approximated by maps taking countably many values.
With a cut-off argument, we can then approximate f by simple maps, as required. ]

Given a simple map f: X — B and a Borel set £ C X, we define
n n
/ fdp:=> wWENE)vyeB if f=> Xgu. (5.7)
E i=1 i=1
Exercise 5.10 Show that the integral in (5.7 is well-posed, i.e. it does not depend on the

particular way of writing f, and that it is linear.

Definition 5.11 (Bochner integral) A map f : X — B is said to be Bochner integrable
provided there exists a sequence (fn)n of simple maps such that each x +— an(x) - f(x)HB 18
a p-measurable function and limy, [ ||f, — f|ly du = 0. In this case, we define

/ fdp:= lim / fndp  for every E C X Borel. (5.8)
E n—oo E
Remark 5.12 It follows from the very definition that the inequality

/ fdu| < / 1£1lp dp (5.9)
E B E

holds for every f simple. Now fix a Bochner integrable map f and a sequence (f,), of simple
maps that converge to f as in Definition Hence we have that

H [ (= Fn)

-
< /||fn—f||Bdu+/ 1 = funllg i ™3 0,
B E E
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proving that ( I5 fn du)n is Cauchy in B and accordingly the limit in (5.8 exists. Further,
take another sequence (g,), of simple maps converging to f in the sense of Definition
Therefore one has that

‘ /E(fn — gn)dp

which implies lim,, [, fn dpp = limy, [, g, dpe. This grants that [, f dp is well-defined. [ |

n
< /an—fH]BdMJr/ 1 = gulls du 5 0,
B E E

Proposition 5.13 Let f: X — B be a given map. Then f is Bochner integrable if and only
if it is strongly p-measurable and [ ||f|lp dp < 4.

Proof. Necessity is trivial. To prove sufficiency, consider the maps P defined in (5.6) and
call f. := P. o f. Hence we have [ ||f. — f|lzdp < e for all € > 0. Recall that the projection
maps P. are written in the form » —y Xc(e,n) Vn, 80 that fo = >y X5-1(0(e,n)) Vn- Now let
us define gF := Y n<k Xf=1(C(e,n)) Un for all k € N. Given that Sonen #(f7HC(e,n))) lvnllg is
equal to [ || fz||g die, which is smaller than [ ||f||z dp + € and accordingly finite, we see that

o0
k — k
[l = flsdn= > (s CEm) fonls 0.
n=k+1
Since the maps gf are simple, we can thus conclude by a diagonalisation argument. O

Example 5.14 Denote by M([0, 1]) the Banach space of all signed Radon measures on [0, 1],
endowed with the total variation norm. Then the map [0, 1] — M([0, 1]), which sends ¢ € [0, 1]
to §; € £(]0,1]), is not strongly Borel.

Indeed, notice that ||6; — ds||1\, = 2 for every ¢,s € [0,1] with ¢ # s. Now suppose that
there exists a Borel set N C [0, 1] with £!(N) = 0 such that {&; : ¢ € [0,1]\ N'} is separable.
Take a countable dense subset (i), of such set. Hence for every ¢ € [0,1] \ N we can choose
an index n(t) € N such that [|6; — pi,s)[lq,, < 1. Clearly the function n: [0,1] \ N — N must
be injective, which contradicts the fact that [0,1] \ N is not countable.

6 Lesson [25/10/2017]
Let us define the space L'(u;B) as follows:

LY(u;B) = {f: X = B Bochner integrable}/(u-a.e. equality). (6.1)
Then L'(u;B) is a Banach space if endowed with the norm 1Nl e umy = J Hf(:):)H]B dp(x).

Remark 6.1 Given two metric spaces X, Y and a continuous map f: X — Y, we have that
the image f(X) is separable whenever X is separable.
Indeed, if (zy,), is dense in X, then (f(xn))n is dense in f(X) by continuity of f. [

Proposition 6.2 Let EE C X be Borel. Let V be another Banach space. Then:
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i) For every f € L'(u;B), it holds that

|

In particular, the map L'(u;B) — B sending f to [ fdu is linear and continuous.

< [E 1l dpe. (6.2)

ii) The space Cy(X,B) is (contained and) dense in L'(u;B).

iii) If ¢: B — V is linear continuous and f € L*(11;B), one has that o f € L'(i; V) and

€</Efdu) :/Efofdu. (6.3)

Proof. 1) As already mentioned in (5.9)), we have that the inequality (6.2} is satisfied whenever
the map f is simple, because if f = """ | Xp, v; then

‘/Efdu Bﬁg

For f generic, choose a sequence (f,), of simple maps that converge to f in L'(x;B). Then

[ rau [ fad| < v [l di= [ 5l di
E E B "TJE E

thus proving the validity of .

ii) The elements of C(X,B), which are clearly Borel, are (essentially) separably valued by
Remark in other words they are strongly Borel. This grants that Cy(X,B) C L!(u;B).
To prove its density, it suffices to approximate just the maps of the form Xgwv. First choose
any sequence (Cy,), of closed subsets of E with pu(E \ Cy,) N\ 0, so that X¢,v — Xgv with
respect to the L!(y;B)-norm, then for each n € N notice that the maps (1 — kd(, Cn))+v
belong to Cy(X,B) and L!(y; B)-converge to X¢, v as k — 0o. So Cy(X, B) is dense in L (u; B).
iii) In the case in which f is simple, say f = > I ; Xg, v;, one has that

z(/Efd;Q :Zzn;,u(EiﬁE)f(vi):/Efofdu.

For a general f, choose a sequence (fy,), of simple maps that L!(u;B)-converge to f. Ob-
serve that the inequality [ [[¢(f — fn)||y (@) du(x) < [[€]] [ ||f — fullg du is satisfied, where /]|
stands for the operator norm of ¢. In particular [ glofudp— / gl o fdu. Therefore

€</Efdu>:nli_{IolOE(/Efndu):nli_{glo/Eéofndu:/Eéofdu,

proving (6.3]) as required. O

/XEmE vidp

=" u(Ei O B) [uilly = / 1£]ls .
B =1 E

= lim
]B n—oo

Definition 6.3 (Closed operator) A closed operator T : B — V is a couple (D(T),T),
where D(T') is a linear subspace of B and T : D(T') — V is a linear map whose graph, defined
as Graph(T) := {(v,Tv) : v e D(T)}, is a closed subspace of the product space B x V.
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Closedness of Graph(T') can be equivalently stated as follows: if a sequence (vy,), C D(T)
satisfy lim,, [[v, — v||z = 0 and lim,, || Tv, — w||y, = 0 for some vectors v € B and w € V, then
necessarily v € D(T') and w = T'v.

Example 6.4 (of closed operators) We provide three examples of closed operators:
i) Let B =V = C([0,1]). Then take D(T}) = C*([0,1]) and Ti(f) = f'.
ii) Let B =V = L%(0,1). Then take D(Ty) = W12(0,1) and T2(f) = f'.

iii) Let B = L2(R") and V = [LQ(]R”)}TL. Then take D(T3) = WH2(R") and T3(f) equal to
the n-tuple (Oz, f, ..., 0z, f)-

Example 6.5 (of non-closed operator) Consider B = V = L*(R"), with n > 1. Let us
define D(Ty) = WH3(R™) and Ty(f) = 0y, f- Then (D(T4),T4) is not a closed operator.

Exercise 6.6 Prove Example [6.4] and Example

Remark 6.7 Let f € L'(u;B) be given. Suppose that there exists a closed subspace V of B
such that f(z) € V holds for p-a.e. x € X. Then fE fdu eV for every E C X Borel.

We argue by contradiction: suppose [ g fdp ¢V, then we can choose £ € B’ with £ =0
on V and ¢( [ fdu) = 1 by Hahn-Banach theorem. But the fact that (¢ o f)(z) = 0 holds
for pra.e. z € X implies that ¢( [, fdp) = [, €o fdu =0 by (6.3), which is absurd. [ |

Theorem 6.8 (Hille) Let T : B — V be a closed operator. Consider a map f € L'(u;B)
that satisfies f(x) € D(T) for p-a.e. x € X and T o f € L'(u; V). Then for every E C X
Borel it holds that [ fdp € D(T) and that

T</Efd,u> :/ETofd,u. (6.4)

Proof. Define the map ® : X — BxV as ®(z) := (f(x), (T o f)(z)) for p-a.e. z € X. One can
readily check that ® € L!(y; B x V). Moreover, ®(z) € Graph(T) for p-a.e. z € X, whence

</Efdu,/ETo fdy) = /ECD(:U) dp(z) € Graph(T)
by Remark This means that [, fdu € D(T) and that T( [, fdu) = [T o fdpu. O

Let us now concentrate our attention on the case in which X = [0,1] and p = Ll‘[o n

Proposition 6.9 Let v: [0,1] — B be an absolutely continuous curve. Suppose that
’ . Uggp — Ut .
vy = lim ———— € B euists for a.e. t € [0,1]. (6.5)
h—0 h

Then the map v’ : [0,1] — B is Bochner integrable and satisfies

t
Vg — Vg = / v.dr  for every t,s € [0,1] with s < t. (6.6)
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Proof. First of all, by arguing as in Remark we see that v’ is Borel. Moreover, if V' is a
closed separable subspace of B such that vy € V for a.e. t € [0,1], then v; € V for a.e. t € [0,1]
as well, i.e. v/ is essentially separably valued. Hence v’ is a strongly Borel map. Since the
function ||v/||p coincides a.e. with the metric speed ||, which belongs to L*(0,1), we conclude
that v’ is Bochner integrable by Proposition . Finally, to prove it is enough to show
that v; = vg + fot vl ds for any t € [0,1]. For every ¢ € B’ it holds that ¢t — f(v;) € R is
absolutely continuous, with £6(v;) = £(v}) for a.e. t € [0,1]. Therefore

t/q t - t
l(vg) = £(vg) +/ (E(US)> ds = £(vg) + / {(vl)ds 1 <v0 +/ vl ds) ,
o \ds 0 0
. . . t / . . / .
which implies that v; = vg + fo v, ds by arbitrariness of ¢ € B’. Thus is proved. O

Example 6.10 Let us define the map v : [0,1] — L'(0,1) as v; := X0, for every t € [0, 1].
Then v is 1-Lipschitz (so also absolutely continuous), because [[v; — vs|[11(1) = ¢ — s holds
for every t,s € [0,1] with s < ¢, but v is not differentiable at any ¢ € [0, 1]: the incremental
ratios h =1 (vpyp — vp) = h_IX(t’Hh} pointwise converge to 0 as h \, 0 and have L!(0,1)-norm
equal to 1. Actually, the probability measures h_1X(t7t+h] L' weakly converges to &; as h \, 0.

Exercise 6.11 Let B be a Hilbert space (or, more generally, a reflexive Banach space). Prove

that any absolutely continuous curve v : [0,1] — B is almost everywhere differentiable.

Proposition 6.12 (Lebesgue points) Let v: [0,1] — B be Bochner integrable. Then
t+h

I . - e 1. .
hlg%) - |lvs —ve|[gds =0  for a.e. t € [0,1] (6.7)

Proof. Choose a separable set V' C B such that v; € V for a.e. t € [0, 1] and a sequence (wy, )
that is dense in V. For any n € N, the map t ~ |[vy — wy|z € R belongs to L*(0,1), hence
there exists a Borel set N,, C [0, 1], with £1(NN,,) = 0, such that

t+h
o — wy||p = lim ][ lvs — wy||gds  holds for every t € [0,1] \ Ny,
WNO Sy,

by Lebesgue differentiation theorem. Call N := |J,, Ny, which is an L1-negligible Borel subset
of [0,1]. Therefore for almost every ¢t € [0,1] \ N one has that

_ ptth [ ptth
li — ds < inf 1i — d —
T £ o lpds < inf i | = wnll ds -

— inf 2||v; — -0
inf lve — wn|g

by density of (wy), in V. Hence (6.7)) is proved, getting the thesis. O
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7 Lesson [30/10/2017]

Fix two complete and separable metric spaces (X,dx), (Y,dy). Let u and v be finite Borel
measures on X and Y, respectively. In the following three results we will denote by f: Y — R
the v-measurable maps and by [f] the elements of L' (v).

Proposition 7.1 Let X > x + [f;] € L'(v) be any pu-measurable map. Then there exists a
choice (z,y) — f(x,y) of representatives, i.e. [f(x, )] = [fz] holds for p-a.e. x € X, which is

Borel measurable. Moreover, any two such choices agree (u X v)-a.e. in X X Y.

Proof. The thesis is clearly verified whenever x — [f,] is a simple map. For x — [f,] generic,
define [fF¥] := X4, () [fs] for p-a.e. z € X, where we put Ay := {z € X : |Hflf]HL1(y) < k}.
Now let k € N be fixed. Given that [f¥] belongs to L' (u; L'(v)), we can choose a sequence of
simple maps [¢"] : X — L'(v) such that ||[g"] — [fk]HLl(le(V)) < 272" for every n € N. As
observed in the first part of the proof, we can choose a Borel representative g" : X x Y — R
of [¢"] for every n € N. By using Cebysév’s inequality, we obtain that

u({xEX : H[ — [ HLI(V) > 27 ”}> 2i holds for every n € N.
Therefore we have that
(U o {5 1020 sy < 27 orall > o} ) =0 ()

Then the functions " converge (u X v)-a.e. to some limit function 5 X xY — R, which is
accordingly a Borel representative of [f*]. To conclude, let us define

y) = Z XA\, g Ai (z) f¥(x,y)  for every (z,y) € X x Y.
keN

Therefore f is the desired representative of z [fz], whence the thesis is proved. O

Proposition 7.2 Consider the operator ® : L*(p; L'(v)) — L'(u x v) sending x +— [f4] to
(the equivalence class of ) one of its Borel representatives f found in Proposition . Then

the map ® is (well-defined and) an isometric isomorphism.

Proof. Well-posedness of ® follows from Proposition [7.1] and from the fact that

3 oy = [ 1122165 vt ante //WW 0= [ 17l

where the last equality is a consequence of Fubini theorem. The same equalities also guarantee
that ® is an isometry. Moreover, the map ® is linear, continuous and injective. In order to
conclude, it suffices to show that the image of ® is dense. Given any f € Ch(X xY), we
have that lim,/_,, [ ‘f(x’, y) — f(x, y)‘ dv(y) = 0 for every z € X by dominated convergence
theorem, so that x — f(z,-) € L'(v) is continuous and accordingly in L' (13 L*(v)). In other
words, we proved that any f € Cy(X x Y) belongs to the image of ®. Since Cp(X X Y) is
dense in L'(p x v) by Proposition we thus obtained the thesis. O
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Proposition 7.3 Let (z+— [f2]) € L' (u; L' (v)) and call [f] its image under ®. Then

</[fx] d,u(m)) (y) = /f(x,y) du(z)  holds for v-a.e. y €Y. (7.2)

Proof. First of all, we define the linear and continuous operator Ty : L'(y; L' (v)) — L*(v)
as T1(f) == [[fz]du(z) € L'(v) for every f € L'(u; L'(v)). On the other hand, by Fubini
theorem it makes sense to define Ty(f) := (ye— [ f(z,y) dp(z)) € L'(v) for all felLl(uxv),
so that Ty : L'(u x v) — L'(v) is a linear and continuous operator. Therefore the diagram

LY (s LM (v)) —2— LY(n x v)

e I

L'(w)

is commutative, because T} and Ty o ® clearly agree on simple maps f : X — L'(v). Hence
formula ([7.2)) is proved, as required. O

Lemma 7.4 (Easy version of Dunford-Pettis) Let (f,,), C L'(v) be a sequence with the
following property: there exists g € L'(v) such that |f,| < g holds v-a.e. for every n € N.
Then there exists a subsequence (ng)i and some function f € L'(v) such that fn, — [ weakly
in L'(v) and |f| < g holds v-a.e. in Y.

Proof. For any k € N, denote f* := min { max{ fp,, —k}, k:} and g := min { max{g, —k},k}.
The sequence (f%),, is bounded in L?(v) for any fixed k € N, thus a diagonalisation argument
shows the existence of (n;); and (hy); € L?(v) such that f¥ — hy, weakly in L?(v) for all k.
In particular, fffl — hy, weakly in L!(v) for all k. Moreover, one can readily check that

|f,’fi - fﬁ:| <|gx — gxr| holds v-a.e. for every i, k, k' € N. (7.3)

By using (7.3), the lower semicontinuity of || - || 1(,) with respect to the weak topology and
the dominated convergence theorem, we then deduce that

[ aw <t [ 1gt = g8 dv < [lgc- gulay ©5 0, (7.4)

1—00

which grants that the sequence (hg); € L'(v) is Cauchy. Call f € L'(v) its limit. To prove
that f,, — f weakly in L!(v) as i — oo, observe that for any ¢ € L>(v) it holds that

+ [ wdv}

i ‘/(fm—fwdv

1—00

< Tm [/\fm—ff;\Eldwr’/(f?’«fi—hk)ﬁdv
71— 00

< (g = 9tllza) + N = Fllzr)) 1wy
k
<2 ||g - ngLl(V) ||£||L°°(V) 7 07

where the second inequality stems from ([7.3)) and the third one from ([7.4)).
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Finally, in order to prove the v-a.e. inequality |f| < g it is clearly sufficient to show that

’/fédy g/

Property (7.5 can be proved by noticing that for any non-negative ¢ € L*°(v) one has

‘/fédu _ilggo‘/fmzdu

Therefore the thesis is achieved. O

gldv  for every ¢ € L*(v) with £ > 0. (7.5)

<t [Ifledv< [gean

1—00

Hereafter, we shall make use of the following shorthand notation:

Ly = L1 and  A:={(t,s) € [0,1]2 i s <t} (7.6)

l0,1]

Proposition 7.5 Let f: [0,1] = L'(v) and g € L' (£1; L' (v)) be given. Suppose that
t
|fi(y) = fs(y)| < / gr(y)dr holds for v-a.e. y € Y,  for every (t,s) € A. (7.7)

Then f is absolutely continuous and L1-a.e. differentiable. Moreover, its derivative satisfies

fil) < ge(y)  for (L1 xv)-ace (t,y) €[0,1] x Y. (7.8)

Proof. By integrating (7.7), we get that || f; — fsl[11(,) < fst 97| 11(,) dr for every (¢,5) € A.
This proves that ¢ — f; € L'(v) is AC, but in general this does not grant that ¢ — f; is a.e.
diﬁerentiable cf. for instance Example [6.10] We thus proceed in the following way: let us

define gf := = t+€ gr dr for every € > 0 and ¢ € [0, 1]. Observe that

t+e
19021 ey = / / 1951() do(y) dt < / /f v () dr di(y) dt
/ / 19:1(%) () dr = 19|11 e,

is satisfied for every ¢ > 0. Given any map h € C([0,1],L'(v)), it clearly holds that h° — h.
in L'(£1 x v) as € \, 0. Therefore for any such h one has that

(7.9)

T lly" = gll 1o, x0) < i [H 9= 1| 1ge sy + IR = h”Ll(lev] P = gl e,
<2 ||9 =Dl x) il{‘% 1h* =Rl L1 ig,x)

=2|lg - h”Ll(L1><V)7

where the second inequality follows from and the third one from continuity of h. Given
that C([0,1], L*(v)) is dense in L*(£1; L*(v)), we conclude that lim.\ g [|g° — Il L1y %) =0

In particular, there exist a sequence &, \, 0 and a function G € L'(£; x v) such that the
inequality ¢g°» < G holds (£; x v)-a.e. for every n € N. This grant that

ft+€n - ft

1 t4en
- < /t grdr = gi" < G; holds v-a.e. for a.e. t€[0,1]. (7.10)

€n
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The bound in ([7.10)) allows us to apply Lemma up to a not relabeled subsequence, we
have that (f .., — f.)/en weakly converges in L'(£1 x v) to some function f' € L'(L1 x v).
Moreover, simple computations yield

t fr+ _ fr t+en S+en
/ 527 dr = ][ frdr — ][ frdr for every (t,s) € A. (7.11)
s n t s

The continuity of 7 — f. € L'(v) grants that the right hand side in (7.11]) converges to f; — fs
in L'(v) as n — oo. On the other hand, for every ¢ € L>(v) it holds that

/5 (/ fr—i—sn Ir dr) ) du(y /€ ¥) X (r fr+en( ) fr(y) (L1 X ) (1),

Loo(Ll ><l/)

which in turn converges to [ 4(y) (fst fldr)(y) dv(y) as n — co. In other words, we showed
that fst(frﬁn — fr)/endr — fst frdr weakly in L'(v). So by letting n — oo in (7.11]) we get

t
/ frdr=f;— fs forevery (t,s) € A.

Therefore Proposition implies that f is the strong derivative in L'(v) of the map t — f;
for a.e. t € [0,1]. Finally, by recalling ([7.7)) we also conclude that (7.8) is verified. O

Lemma 7.6 Let h € L'(0,1) be given. Then h € WHL(0,1) if and only if there exists a
function g € L'(0,1) such that

t
hy — hg :/ grdr  holds for £2-a.e. (t,s) € A. (7.12)

Moreover, in such case it holds that h' = g.

Proof. NECESSITY. Fix any family of convolution kernels p. € CX(R), ie. [ p.(z)dz = 1,
the support of p. is contained in (—e,¢) and p. > 0. Let us define h® := h * p. for all ¢ > 0.
Recall that h® € C°(R) and that (h®)" = (h') % p.. Choose a sequence &, \, 0 and a negligible
Borel set N C [0, 1] such that hi™ — hy as n — oo for every ¢ € [0,1]\ N. Given that we have
the equality h;™ — hS" = f;(han); dr for every n € N and (t, s) € A, we can finally conclude
that hy — hs = ft Rl dr for L%-a.e. (t,5) € A, proving (7.12) with g = h'.

SUFFICIENCY. By Fubini theorem, we see that for a.e. € > 0 it holds that hyy.—h; = ft tte grdr

t+€n

for a.e. t € [0,1]. In particular, there is a sequence &, N\, 0 such that hy ., — hy = grdr

for every n € N and for a.e. t € [0, 1]. Now fix ¢ € C2°(0,1). Then

- _ h _ h t+en
[Erem = [ et g [(F e @y
En €n t

By applying the dominated convergence theorem, we finally deduce by letting n — oo in the
equation (7.13)) that — [ ¢} hydt = [ g p¢ dt. Hence h € Wh1(0,1) and 1/ = g. O
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We are now in a position to prove Theorem For the sake of clarity, we restate it:

Theorem 7.7 (Theorem |4.18]) Consider a metric measure space (X,d, m) as in (1.1)). Fiz
a Borel map f: X — R. Let G € L?(m) satisfy G > 0. Then the following are equivalent:

i) f€S%X) and G is a weak upper gradient of f.

ii) For any test plan , we have that t — foe, — foey € L'(m) is AC. For a.e. t € [0,1],
there exists the strong L'(m)-limit of (foesin, — foes)/h as h — 0. Such limit, denoted
by Derx(f), € L1(71'), satisfies ‘Derﬂ(f)t}(’y) < G(w) || for (7 x L1)-a.e. (7,t).

iii) For every test plan m, we have for w-a.e. «y that f o~y belongs to WH1(0,1) and that the
inequality |(f o 7);| < G(w)|e| holds for a.e. t € [0,1].

If the above hold, then the equality Dery(f),(v) = (f o)} is verified for (w x L1)-a.e. (7,1).

Proof.
i) = ii) We have that |f(y) — f(7s)| < fst G (vr) || dr is satisfied for every (¢,s) € A and
for m-a.e. v by Proposition Since the map (v,t) — G(v)|3:| belongs to L'(m x £1) by

Remark and Remark we obtain ii) by applying Proposition
ii) = iii) By Fubini theorem, one has for m-a.e. v that f(v) — f(vs) = f; Derg(f),(v)dr
holds for £2-a.e. (t,s) € A, whence iii) stems from Lemma Further, for mw-a.e. v we have

/ (For)dr = f(m) — flr) = / Dern(f),(1)dr  for L2ae. (t,s) € A,

which in turn implies the last statement of the theorem.
iii) = 1) Fix a test plan 7w on X. Choose a point Z € X and a sequence of 1-Lipschitz
functions (1), C Cp(X) such that 7, = 1 on B, (z) and spt(n,) C Bp1+2(Z). Let us define

™ :=mn, min { max{ f, —m},m} for every m,n € N.

Fix m,n € N. Notice that f™ o~y c WH1(0,1) for m-a.e. 7, so that Lemma implies that

/ |7 () = £ ()| A () < // (f™ o) drdm(y) for L2ace. (t,5) € A. (7.14)

The right hand side in (7.14]) is clearly continuous in (t,s). Since f™" € L!'(m), we deduce
from Proposition that also the left hand side is continuous in (¢, s), thus in particular

1
/ £ (1) — F7(70) | () < / /0 (™™ o )] dt dm (). (7.15)

(fmn o 7);’ <m || XB, @) (1) + }(f o 7)2‘ is satisfied for (w x £1)-a.e. (7,t) as a
consequence of the Leibniz rule, whence

/|f(71) — f()|dw(y) < lim lim [ |f™ (1) = ™ (0)|dm(v)

mM—>00 N—00

Moreover,

m—r00 N—00

1
< lim tw | /O [ 30 X002 () + 1(F 0 1) de e ()

= i ([ [Gontlarinty < [[ GGollatanty,

m—00
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where the first line follows from Fatou lemma, the second one from (7.15)) and the third one
from the dominated convergence theorem. Therefore i) is proved. (|

Remark 7.8 To be more precise, the last statement in Theorem should be stated in the
following way: we can choose a Borel representative F' € L' (£1 x m) of t = Derr(f), € L'(m)
in the sense of Proposition since such map belongs to L' (Ll; Ll(ﬂ')) by ii). Analogously,
we can choose a Borel representative F' € L (m x £1) of 7 — (t— (fov); € L*(0,1)), which
belongs to L' (r; L*(£1)) by iii). Then F(t,7) = F(v,t) holds for (7 x £1)-a.e. (v,1). [

8 Lesson [06/11/2017]

We point out some consequences of Theorem already mentioned in Remark

Proposition 8.1 Let f € S%(X). Consider two weak upper gradients G1,Go € L*(m) of f.
Then min{G1, G2} is a weak upper gradient of f.

Proof. By point ii) of Theorem we know that [Derx(f),|(7) < Gi(7)|3:| holds for i = 1,2
and for (7 x £1)-a.e. (7,t), thus also [Derx(f),|(7) < (G1 AG2) ()R] for (7 x L1)-a.e. (7,1).
Therefore G1 A G2 is a weak upper gradient of f, again by Theorem [7.7] O

Corollary 8.2 Let f € S?(X). Let G € L*(m) be a weak upper gradient of f. Then |Df| < G
holds m-a.e. in X. In other words, |Df| is minimal also in the m-a.e. sense.

Proof. We argue by contradiction: suppose that there exists a weak upper gradient G of f
such that m({G < |Df|}) > 0. Hence the function G A |D f|, which has an L?(m)-norm that
is strictly smaller than H |Df] H L2(m)’ is a weak upper gradient of f by Proposition This
leads to a contradiction, thus proving the statement.

Given any f € LIP(X), we define the local Lipschitz constant lip(f) : X — [0, +00) as

(7)) 1= Jig 10~

and lip(f)(z) := 0 otherwise.

if z € X is an accumulation point (8.1)

Remark 8.3 Given a Lipschitz function f € LIP(X) and an AC curve v : [0,1] — X, it
holds that ¢ — f(y:) € R is AC and satisfies

|(f o)t < Up(F)(3) 13| for ae. t € [0,1]. (8.2)
Indeed, to check that f o~ is AC simply notice that |f(7t) - f(’ys)’ < Lip(f) fst |9r| dr holds
for any ¢, s € [0,1] with s <t. Now fix ¢ € [0,1] such that both (f o~); and || exist (which
holds for a.e. t). If v is constant in some neighbourhood of ¢, then ({8.2)) is trivially verified
(since the left hand side is null). In the remaining case, we have that

|(f o V)en — (f o]

| (vern) = F(n)] i 0400 7)

=1 < lim < li )
(fof)/)t hg)% |h| = hg% d(’ytJrh?’Yt) B0 ’h’ = lp(f)('}’t) h/t‘?
obtaining (i8.2)). [
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Proposition 8.4 Let f € LIPys(X) be given. Then f € S*(X) and |Df| < lip(f) < Lip(f)
holds m-a.e. in X.

Proof. For any AC curve v, we have that |f(y1) — f(70)] < fol Lip(f)(ve) |3:| dt by (8.2). By

integrating such inequality with respect to any test plan &, we get the thesis. O

Definition 8.5 (Upper gradient) Consider two functions f,g: X — R, with g > 0. Then
we say that g is an upper gradient of f provided for any AC curve v : [0,1] — X one has
that the curve f o~ is AC and satisfies |(f o 7);| < g(ve)|%| for a.e. t €[0,1].

Note that lip(f) is an upper gradient of f for any f € LIP(X), as shown in Remark

Remark 8.6 In general, a ‘minimal upper gradient’ might fail to exist. |

Theorem 8.7 The following hold:
A) LocAaLiTy. Let f,g € S?(X) be given. Then |Df| = |Dg| holds m-a.e. in {f = g}.
B) CHAIN RULE. Let f € S?(X) be given.

B1) If a Borel set N C R is L'-negligible, then |Df| = 0 holds m-a.e. in f~1(N).

B2) If¢: R — R is a Lipschitz function, then pof € S2(X) and |D(pof)| = |¢'|of |Df]
holds m-a.e., where |¢'| o f is arbitrarily defined on f~1({t e R : B/ (t)}).

C) LEIBNIZ RULE. Let f,g € S?>(X) N L>®(m) be given. Then fg € S*(X) N L>®(m) and the
inequality |D(fg)| < |f||Dg|+ |g||Df| holds m-a.e. in X.

Proof. STEP 1. First of all, we claim that
fes)X), p e LIP(R) = o feS*X), |D(pof)| <Lip(p)|Df| mae. (8.3)

Indeed, the inequality [ |(¢ o f)(31) = (¢ o £)(70)| dm(y) < Lip(¢) [y [DfI()]3] dt dme(v)
holds for any test plan 7r, thus proving (8.3).

STEP 2. Given h € WhH1(0,1) and ¢ € CY(R) N LIP(R), we have that ¢ o h € W1(0,1) and
that (¢ oh) = ¢’ ohh' holds a.e. in (0,1). In order to prove it, call he := h* p, for all € > 0,
notice that (¢ o h.) = ¢’ o he h. because h is smooth and finally pass to the limit as & N\, 0.
STEP 3. We now claim that

feS*X), o e CHR)NLIP(R) = |D(po f)| <|¢|of|Df| m-a.e.. (8.4)

To prove it: fix a test plan 7. For mr-a.e. v, it holds that ¢ — f(;) belongs to W1(0,1) and
that |(f o v)}| < |Df|(v)|%| for a.e. ¢ € [0,1], by Theorem Hence STEP 2 grants that
the function ¢ — (¢ o f)(7y;) is in W11(0,1) and satisfies

(o fori| < (10 f) ) [(f ol < (I¢'10 f) () IDFI(w) I3l for ae. t € [0,1],
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whence [D(p o f)| < |¢/| o f |Df| holds m-a.e. by Theorem [7.7] thus proving (8-4).
STEP 4. We want to show that

f€S*X), K CR compact with L'(K) =0 = |Df| =0 m-ae. in f"Y(K). (8.5)

For any n € N, let us call ¢, := nd(-, K) A 1. Since the £!-measure of the e-neighbourhood
of K converges to 0 as € \, 0, we deduce that £'({¢, < 1}) — 0 as n — oo. Now call ¢,
the primitive of v,. Given that v, is continuous and bounded, we have that ¢, is C' and
Lipschitz. Moreover, it holds that ¢, uniformly converges to idg as n — oo, because

t
|<Pn(t) - t’ < /0 Wn(S) - 1| ds < Ll({djn <1}) .

In particular ¢, o f — f pointwise m-a.e., whence Proposition [5.2] gives

[1psPan <t [ Do Pan 'S i [Ig o flDPAns [ [DfPdm,
oo n—00 X\fH(EK)

where in the last inequality we used the facts that [¢},| < [[¥n]| e () = 1 and that ¢}, = ¢, =0
on K. This forces |Df| to be m-a.e. null in the set f~!(K), obtaining (8.5).

STEP 5. We now use STEP 4 to prove B1). Take f € S?(X) and N C R Borel with £}(N) = 0.
There exists a measure m € & (X) such that m < m < m, in other words having exactly the
same negligible sets as m. For instance, choose any Borel partition (Bj)n>1 of the space X
such that 0 < m(B,,) < 400 for every n € N and define

- 1
M=) 2 m(B,) B

n=1
Now let us call g := f,m. Since m is finite, we have that p is a Radon measure on R, in
particular p is inner regular. Then there exists a sequence (K,), of compact subsets of N
such that u(N\, Kn) = 0, or equivalently m(f~*(N\U, K,)) = 0. Given that |[Df| = 0is
verified m-a.e. in {J,, f~1(K,) = f~1(U,, K»n) by (8.5)), we thus conclude that B1) is satisfied.
STEP 6. We claim that

fesS}(X), p e LIP(R) = |D(pof)|<|¢|of|Df| m-ae.. (8.6)

To prove it, call ¢, := ¢ * py/,. Up to a not relabeled subsequence, we have that ¢, — ¢
pointwise and ¢, — ¢’ a.e.. Denote by N the (negligible) set of ¢ € R such that either ¢
is not differentiable at ¢, or lim,, ¢} (¢) does not exist, or ¢'(t) and lim, ¢/, (t) exist but are
different. We know that [D(¢py o f)| < |¢,| o f |Df] holds m-a.e. for all n € N by (8.4). Given
that the inequality |¢),| o f |Df| < Lip(¢)|Df| is satisfied m-a.e. for every n € N, we can thus
deduce that |¢!|of |Df| — |¢'|of |Df] in L?(m) by B1) and dominated convergence theorem.
Moreover, one has that ¢, o f — @ o f in the m-a.e. sense, whence |D(¢ o f)| < |¢'| o f|Df|
holds m-a.e. by Proposition This proves the claim .
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STEP 7. We now deduce property B2) from . Suppose wlog that Lip(¢) = 1. Let us
define ¢ (t) := £t — ¢(t) for every t € R. Then m-a.e. in the set f~({£¢’ > 0}) we have

IDf| = D) < |D(po f)l +[DW* o )l < (I¢'| o f +|(vF) o f) IDf| = [Df],

which forces |D(p o f)| = ¢’ o f|Df] to hold m-a.e. in f~*({£¢’ > 0}), which is B2).
STEP 8. Property A) readily follows from B1): if h := f — g then “Df\ - ]Dg” < |Dh| =0
holds m-a.e. in h=1({0}) = {f = g} by B1), proving A).

STEP 9. We conclude by deducing C) from B2). Given two functions hi, ho € WH1(0,1), we
have that hihy € WH1(0,1) and (h1hs)’ = hjhe +hihb. Now fix f,g € S*(X)N L®(m). Given
any test plan 7, we have for m-a.e. v that fo~y,goy € W1(0,1), so that (fg)oy € W11(0,1)
as well. Further, |(fov)}| < |Df[(v)|5%] and [(goy);| < [Dgl(y:)|5| for a.e. t € [0,1], whence

1((f9) 2 7)3] < 1£1Cve) [(g 0 v)i] + 1gl(e) | (F o W)i| < [I£11Dgl + lglIDFI] (ve) |

~~

€ L2(m)

is satisfied for a.e. t € [0,1]. Therefore fg € S*(X) and |f||Dg| + |g||Df| is a weak upper
gradient of fg by Theorem thus proving C). O

Remark 8.8 We present an alternative proof of property C) of Theorem [8.7

First of all, suppose that f,g > ¢ for some constant ¢ > 0. Note that the function log is
Lipschitz in [c, +00), then choose any Lipschitz function ¢ : R — R that coincides with log
in [¢,+00). Now call C' :=log (Hfg”Loo(m)) and choose a Lipschitz function ¢ : R — R such
that ¢ = exp in the interval [log(CQ), C’]. By applying property B2) of Theorem we see
that ¢ o (fg) = log(fg) = log(f) +1log(g) = ¢ o f + ¢ o g belongs to S?(X) and accordingly
that fg = exp (log(fg)) =¥ o po(fg) € S*(X). Furthermore, again by B2) we deduce that

D(f9)l = ¥/ 0w (f9) |D(w o (£9))] < Ifgl [|DIog(f)| + | Dlog(g)]]

Dfl . |Dg :
= |fg| [H-I-H] = |fl|Dg| + |g||Df] m-a.e. in X.
If gl
Now consider the case of general f,g € S?(X) N L% (m). It is sufficient to prove the thesis
for a function g satisfying g > ¢ > 0. For any n € N and i € Z, let us denote I,,; := [%, %[

Call ¢y; the continuous function that is the identity on I,; and constant elsewhere. Let us
define fn; := f — % and fm = piof— % Notice that f,; = fm holds m-a.e. in f~1(I;),
whence |D fpi| = |D fni| = |Df| and }D(]fmg)} = | D(fni g)| are verified m-a.e. in f~(I,;) by
locality. Moreover, we have that 1/n < f,; < 2/n holds m-a.e. in X. Therefore

1—1 ~ = 1—1
D) < [DUria)| + 2 1Dyl < 191D Ful + 1Fuall Dol + M 1yl

4
<lolDfl+ 100l (17145) a7 0,

where the second inequality follows from the case f,g > ¢ > 0 treated above. This implies
that the inequality |D(fg)| < [f|[Dg| + |g[|Df| 4+ 4|Dg|/n holds m-a.e. in X. Since n € N is
arbitrary, the Leibniz rule follows. |
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Remark 8.9 Property C) of Theorem can be easily seen to hold for every f € Wh2(X)
and g € LIP,(X). [

We can now introduce the local Sobolev class associated to (X, d, m):

Definition 8.10 We define S?, .(X) as the set of all Borel functions f : X — R with the
following property: for any bounded Borel set B C X, there exists a function fg € S?(X) such
that fp = f holds m-a.e. in B. Given any f € S (X), we define the function |Df| as

loc

for any bounded Borel set B C X and for

D = 1D m-a.e. ¢ B’
| f| | fB| a.c.m any fB = SQ(X) with fB :f m-a.e. in B.

(8.7)

The well-posedness of definition stems from the locality property of minimal weak upper
gradients, which had been proved in Theorem

We define L2 (X) as the space of all Borel functions g : X — R such that 9|5 € L?(m) for

every bounded Borel subset B of X. It is then clear that |Df| € L} (X) for any f € S3 (X).

Proposition 8.11 (Alternative characterisation of S} (X), pt. 1) Let f € S (X) be
given. Then it holds that

1
/ ‘f(’Yl) - f(%)‘ dm(y) < //0 IDf|(ve) || dtdm(y)  for every m test plan. (8.8)

Proof. Fix a test plan 7 and a point € X. For any n € N, let us define
1
r,:= {fy: [0,1] = X AC ’ d(70,%) <n and / |92 dt < n},
0

which turns out to be a closed subset of C([0,1],X). It is clear that = ({J, I'n) = 1. Now let
us call m,, ;= w(T',) ! 7|, for every n € N such that w(I',) > 0. For m,-a.e. v it holds that

1/2
d(y¢, ) / |9s| ds + d(vy0, T </ 5] ds) +n<+yn+n foreveryte€[0,1].

Denote by B, the open ball of radius \/n+n+1 centered at 7 and take any function f,, € S?(X)
such that f,, = f holds m-a.e. in B,,. Therefore for m,-a.e. curve v one has that

1 1
|f(1) = fF(0)] = | fa(n1) = fa(0)] < / |D ful (7e) || At = / |D £ (ve) | yel dt,
0 0

whence ({8.8)) follows by arbitrariness of n. O
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9 Lesson [08/11/2017]

Given a Polish space X and a (signed) Borel measure p on X, we define the support of p as
spt(p) :== m {C CXclosed : p*(X\C)=p (X\C)=0}. (9.1)

Clearly spt(u) is a closed subset of X by construction.

Remark 9.1 We point out that

u|X\spt(#) =0. (9.2)
Indeed, since X is a Lindel6f space (as it is separable), we can choose a sequence (U,), of

open sets such that |J, U, = J{X\ C : C closed, |u[(X\ C) =0}, whence
il (X \spt() =l (U Un) < 3 lul(@n) =0,

which is equivalent to (9.2]). |

We can prove the converse of Proposition under the additional assumption that the
function f belongs to the space LZQOC(X).

Proposition 9.2 (Alternative characterisation of S? (X), pt. 2) Let f € L? (X) be a

loc loc
2

giwen map. Suppose that G € Lj, .(X) is a non-negative function satisfying

1
/‘f(’yl) — f(fyo)‘ dm(y) < //0 G(vo)|ye| dtdm(y)  for every 7 test plan. (9.3)

Then f € S}, (X) and |Df| < G holds m-a.e. in X.

loc

Proof. STEP 1. We say that a test plan 7r is bounded provided {’yt .y € spt(m), t €0, 1]}
is bounded. By arguing as in the proof of Theorem [7.7], one can prove the following claim:

Fix f : X — R Borel, m bounded test plan and G € L7, .(X) with G > 0. TFAE:
A) (9:3) holds for every test plan «' of the form (Restr?), (w(I') ™! 7r|r), (9.4)
B) for m-a.e. v we have fo~y e WhH(0,1) and |(f 07)i| < G(7e)|Ae| for ae. t.

STEP 2. Fix a function f € L? (X) satisfying (9.3)), a test plan @ on X and a Lipschitz

loc

function g € LIPs(X). Given z € X and n € N, let us define
1
r,:= {7 : 10,1] = X AC | d(y0,%) <n and / [y |2 dt < n},
0

so that each T'), is a Borel set and W(Un Fn) = 1, as in the proof of Proposition Let
us fix n € N sufficiently big and define 7, := ﬂ(Fn)_l T|p, > 5O that 7, is a bounded test
plan on X. Now choose any open bounded set €2 containing spt(g), whence we have that the
inequality |(g 07)}| < [Dgl || Xa(7¢) holds for (m, x £1)-a.e. (v,t). Thus B) of gives

[((f9) 2 )] < 1) [(g 0 )i| + 19l () [ (F 0] < (X lgl G + Xaa [ £11Dg]) () il
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for (m, x £1)-a.e. (7,1), so also for (7 x £1)-a.e. (v,t). Note that Xq(|g|G+|f||Dg|) € L*(m).
Therefore Theorem grants that fg € S*(X) and |D(fg)| < Xxa(|9|G + | f||Dgl).

STEP 3. To conclude, fix f € L? (X) satisfying (9-3). Given a bounded Borel set B C X,
pick a function g € LIPs(X) with ¢ = 1 on B, thus |Dg| = 0 holds m-a.e. in B by locality.
Hence STEP 2 implies that |Df| = |D(fg)| < G holds m-a.e. in B, yielding the thesis. O

Corollary 9.3 Let f : X — R be a Borel map. Then f € S*(X) if and only if f € S3,.(X)
and |Df| € L?(m).

Proof. Immediate consequence of Proposition and Proposition [9.2] (Il

We now aim to prove that the definition of Sobolev space for abstract metric measure
spaces is consistent with the classical one when we work in the Euclidean setting, namely if

we consider (X,d,m) = (R", dgya, £™). To this purpose, let us fix some notation:

W12(R") = the classical Sobolev space on R",
|Df| = the minimal weak upper gradient of f € S7,.(R"),
df = the distributional differential of f € VVlif (R™),
Vf = the ‘true’ gradient of f € C*°(R").

The above-mentioned consistency can be readily got as a consequence of the following facts:

Proposition 9.4 The following hold:

A) If f e C*°(R") C Wl’Q(R”), then the function f belongs to the space S?. N L?

loc loc loc

the equalities |V f| = |df| = |Df| hold L™-a.e. in R™.

(R™) and

B) If f € WH2(R™) and p € C°(R™) is a convolution kernel, then f x p € W12(R"™) and
the inequality ‘d(f * p)‘ < |df|* p holds L™-a.e. in R™.

C) If f € 2N LA(R™) and p € C(R") is a convolution kernel, then f x p € S> N L*(R")
and the inequality ‘D(f * p)‘ < |Df|*p holds L™-a.e. in R™.

Proof. A) It is well-known that |V f| = |df] holds £L™-a.e.. Moreover, |Df| < lip(f) = |Vf]
is satisfied £™-a.e., thus to conclude it suffices to show that [ |Df|dL™ > [|Vf|dL™. By
monotone convergence theorem, it is enough to prove that [ |[Df[dL™ > [ |V f]dL™ is
satisfied for any compact subset K of the open set {|V fl > O}. Then let us fix such a compact
set i and some € > 0. Call A := ming |V f| > 0. We can take a Borel partition (U;)¥_; of K
and vectors (v;)_; € R™ such that £"(U;) > 0, |v;| > X and |V f(z) —v;| < & for every x € U;.
Fixi=1,...,k Call g := £*"U;)" ! L%, and 7 := Fyu, where F' : R" — C([0,1],R") is
given by x > (t — x + tv;), so that (e;)sm < L™(U;) 7! (- + tv;) L™ < L™(U;) ™! £™ holds for
every t € [0, 1] and ffol |42 dt dmr () = |v5]* < +00, which means that 7 is a test plan on R™.
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N L?

loc

It is clear that f € S? (R™), whence for any ¢ € [0, 1] one has

loc

[ 1£60) = s a) /|wa 7o)l ds dme() = [ui] // IDf|(3) ds dr ()

= |Ui|//|Df|d(es)*7rdS: !vil//|Df|d(-+svi)*uds

M //XUHUZ IDf| L™ ds.

Since Xy, 4sv, converges to Xy, in LQ(R”) as s — 0, if we divide the previous formula by ¢ and
we let ¢ 0, then we obtain that

il fU Ipsac > / (V£ (10),70)] d(y) = / (£, 03)] d(eo)urr = ]{] (90| ac”
> (jui] - 2¢) ]{] Vf|den,

where the last inequality follows from |[(Vf,vi)| > |V fl|vi| — 2|V f||Vf — vi|. Therefore
k k 9e
/K |Df]dL™ = ZL"(Ui)]{] IDf|dL™ > L™(U;) M] IV fdLm — ol 1o \Vf]dL”]
i=1 i i=1 vi

2
> [ vsiaen - 22 [ osacn
K A K

By letting € \, 0 we thus conclude that [ [Df]dL" > [ |V f|dL™, as required.

B) It is well-known that f*p € WH2(R") and d(f*p) = (df)*p. To conclude, it only remains
to observe that ‘(df) * p} < |df]| * p. Hence property B) is achieved.

C) Given any xz € R", let us define Tr, : C([0,1],R") — C([0,1],R™) as Try(v), := v — .
If v is absolutely continuous, then v and Tr, () have the same metric speed. Now fix a test
plan 7. Clearly (Try).7 is a test plan as well. Therefore

/ I p)m) = ( * p)(70)| de() < / ) / Fn1 — 2) — flyo — 2)| dm(y) da
- / p(z) / |F(o1) = £(00)] d(Trs)um(o) da
</ / IDf|(0) |61] dt d(Try ) (o) da

/// ) [DfI(ve = @) || dt dme(y) da
[ ([ o1t s

_ / / (IDf] * p) (3e) [5¢] dt dar (),

which grants that f * p € S2 N L?(R") and ‘D(f * p)‘ < |Df] * p holds L™-a.e. in R™. O
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We are now in a position to prove the main result:

Theorem 9.5 Let f: R® — R be a given Borel function. Then f € S2N L?(R™) if and only
if f € WY2(R™). In this case, the equality |Df| = |df| holds L™-a.e. in R™.

Proof. Let us fix a family of convolution kernels (p;)e»o. Given any f € WH2(R"), we deduce
from properties A) and B) of Proposition [9.4] that f * p. € S? N L?(R™) and that

D(f % po)| = A # po)| < 1df| % pe — [df] in L*(R")  as e\, 0.

Since also f * p. — f in L?(R™) as € \, 0, we have that f € S?N L?(R") and that |Df| < |df]|
holds £™-a.e. in R™, as a consequence of Proposition |4.11

On the other hand, given any function f € S2N L?(R™), we have that f*p. € S2N L?(R")
and that |d(f = p5)| = |D(f = p5)| < |Df| % pc holds L"-a.e. by properties A) and C) of
Proposition Since |Df| % p. — |Df] in L}(R") as € N\, 0, there exist a sequence ) \, 0
and w € L%(R") such that d(f * p.,) — w weakly in L?(R"), thus necessarily w = df. In
particular, it holds that [|df[*dL™ < limy [ |d(f = pgk)‘2dL” = [|Df|*dL", which forces
the L"-a.e. equality |Df| = |df]|, proving the thesis. O

Let us come back to the case of a generic metric measure space (X,d, m). We want to
prove that the Sobolev space W12(X) is separable whenever it is reflexive. To do it, we need
the following result, of purely functional analytic nature:

Lemma 9.6 Let E{,Eo be Banach spaces. Let i : Ei — Eo be a linear and continuous
injection. Suppose that K1 is reflexive and that Ko is separable. Then E; is separable as well.

Proof. Recall that any continuous bijection f from a compact topological space X to a
Hausdorff topological space Y is a homeomorphism (each closed subset C' C X is compact
because X is compact, hence f(C), being compact in the Hausdorff space Y, is closed). Call

X the closed unit ball in E; endowed with the (restriction of the) weak topology of E;,
Y the image i(X) endowed with the (restriction of the) weak topology of Eg,
f the map z'|X from X to Y.

Since X is compact (by reflexivity of E1), Y is Hausdorff and f is continuous (as i is linear
and continuous), we thus deduce that f is a homeomorphism. In particular, the separability
of Y grants that X is separable as well, i.e. the closed unit ball B of E; is weakly separable.
Now fix a countable weakly dense subset D of such ball. Denote by @ the set of all finite
convex combinations with coefficients in Q of elements of D. It is clear that the set @,
which is countable by construction, is strongly dense in the convex hull C of D. Since C is
convex, we have that the weak closure and the strong closure of C' coincide. Moreover, such
closure contains B. Hence () is strongly dense in the set B, which accordingly turns out to
be strongly separable. Finally, we conclude that £y = [ J,,cynB is strongly separable as well,
thus achieving the thesis. ([l
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Hence we can immediately deduce from such lemma that

Theorem 9.7 Let (X,d, m) be a metric measure space. Suppose that WH2(X) is reflexive.
Then W12(X) is separable.

Proof. Apply Lemma. to E; = Wh2(X), E3 = L%(m) and i the inclusion E; < Eo. O

10 Lesson [27/11/2017]

We start by stating and proving a well-known functional analytic result, which will be needed

in the forthcoming discussion:

Theorem 10.1 (Mazur’s lemma) Let B be a Banach space. Let (vy,), € B be a sequence
that weakly converges to some limit v € B. Then there ezist (Np)n C N and (am)N" C[0,1]
such that Z L an; =1 for alln € N and v, := ZN" Qi Vi — v in the strong topology of B.

Proof. Given any n € N, let us denote by K, the strong closure of the set of all (finite) convex
combinations of the (v;);>y. Each set K,,, being strongly closed and convex, is weakly closed
by Hahn-Banach theorem. Given that v € ﬂneN

and some ;.- ., an, € [0,1] such that SN a,; = 1 and ||, — v||z < 1/n, where we

put ¥, 1= Zf&n

K, for every n € N we can choose N, > n

a5 v;. This proves the claim. O

We now introduce some alternative definitions of Sobolev space on a general metric mea-
sure space (X, d, m), which a posteriori turn out to be equivalent to the one (via weak upper
gradients) we gave in Definition Roughly speaking, what we need is an L?(m)-lsc energy
functional of the form 3 [ |df|*dm, where the function |df| is an object which is local” and
satisfies some sort of chain rule. Given any Lipschitz function f € LIP(X), some (seemingly)
good candidates for |df| could be given by

(local Lipschitz constant),
(asymptotic Lipschitz constant),

for x € X accumulation point and lip(f)(z),lip,(f)(z) := 0 otherwise. The local Lipschitz
constant had been previously introduced in (8.1). Observe that lip(f) < lip,(f) < Lip(f)
and that the equalities lip, (f)(x) = lim,~ Lip(f|Br($)) = inf,~o Lip (f|Br(m)) hold for every
accumulation point z € X. Moreover, we shall make use of the following property of lip,:

lip,(fg) < |f|lip,(g) + |g|lip,(f) for every f,g € LIP(X), (10.1)

which is the Leibniz rule for the asymptotic Lipschitz constant.

Exercise 10.2 Prove that lip,(f) is an upper semicontinuous function.
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Another ingredient that we need is the notion of upper gradient, which has been already
introduced in Definition For the sake of convenience, we restate it here:

Definition 10.3 (Upper gradient) Let f : X — R be a given continuous function. Then
a Borel function G : X — [0,400] is said to be an upper gradient of f provided

1
‘f(’yl) — f('yo)‘ < / G(ve)|Ae|dt  holds for every AC curve 7. (10.2)
0

Given any Lipschitz function f € LIP(X), it can be easily seen that lip(f), thus accordingly
also lip,(f), is an upper gradient of f.

Since, in general, the functionals f — 3 [lip?(f)dm and f — & [lip2(f)dm are not lsc,
we have to introduce our energy functionals by means of a relaxation procedure:

Definition 10.4 Let us give the following definitions:

i) The functional E., : L*(m) — [0, +00] is given by

1
E*,a(f) = inf lim 5 hpg(fn) dm,

n—oo

where the infimum is taken among all sequences (fp)n C LIP(X) with f, — f in L*(m).

ii) The functional E, : L*(m) — [0, +00] is given by

1
E.(f) :=1nf lim = [ 1ip(f,) dm,

n—0o0

where the infimum is taken among all sequences (fp)n C LIP(X) with f, — f in L*(m).

iii) The functional Ecy, : L?(m) — [0, 4+00] is given by
NP | 9
Ecun(f) :=inf lim — [ G} dm,
n—oo 2
where the infimum is taken among all sequences (fn)n C C(X) and (Gy)n such that Gy,
is an upper gradient of f, for everyn € N and f, — f in L*(m).

Exercise 10.5 Prove that E., is L?(m)-lower semicontinuous and is the maximal L?(m)-lsc
functional E such that E(f) < % [ lip2(f) dm holds for every f € LIP(X). Actually, the same
properties are verified by E, if we replace lip,(f) with lip(f).

Definition 10.6 We define the Banach spaces W,}}’C?(X), Wi2(X) and Wéf(X) as follows:

WS2(X) == {f € L*(m) : Esa(f) < +00},
WE(X) := {f € L*(m) : E.(f) < +o0}, (10.3)
W (X) == {f € L*(m) : Ecn(f) < +oo}.
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Any upper gradient is a weak upper gradient, thus W*I(E(X) c w2 (X) C Wéh2(X) C WhH2(X).
Hereafter, we shall mainly focus our attention on the space W*IG?(X) Analogous state-
ments for the other two spaces in (10.3]) can be shown to hold.

Remark 10.7 The fact that the set W*IC?(X) is a vector space follows from this observation:
the asymptotic Lipschitz constant satisfies lip, (f +¢) < lip,(f)+lip,(g) for all f, g € LIP(X).
Given any f,g € W*l,f(X) and «a, 8 € R, we can choose two sequences (fp)n, (gn)n € LIP(X)
such that limy, || fn — fll2(m = i g0 = gl 2@ = 0 and Limy, [1ip}(f,) + lipa(g,) dm is
finite. Since af, + Bgn — af + Bg in L?(m), we thus deduce that

2E.q(af + Bg) < lim / lip2(afn + Bgn) dm < 2 Tim / a?1ip2(fy) + B%1ip2(gn) dm < +oo,

which shows that af + 8g € W*lf (X), as required. |

Definition 10.8 (Asymptotic relaxed slope) Let f € W*lf(X) be a given function. Then
an element G € L*(m) with G > 0 is said to be an asymptotic relaxed slope for f provided
there exists a sequence (f,)n, C LIP(X) such that f, — f strongly in L?(m) and lip,(f,) — G’
weakly in L?(m), for some G' € L?(m) with G' < G.

Proposition 10.9 Let f € W*l,’f(X) be given. Then the set of all asymptotic relaxed slopes
for f is a closed conver subset of L*(m). Moreover, its element of minimal L?(m)-norm,

denoted by |Dfl. . and called minimal asymptotic relaxed slope, satisfies the equality

Eeulf) = 5 [ 1DIE dm. (10.4)

Proof. CONVEXITY. Fix two asymptotic relaxed slopes G1, G5 for f and a constant o € [0, 1].
For i = 1,2, choose (f%), C LIP(X) such that f{ — f and lip,(f.) — G: < G;. We then
claim that G + (1 — a)Gs is an asymptotic relaxed slope for f. In order to prove it, notice
that af! + (1 — a)f2 — f in L?(m) and that

lip, (afr + (1 —a)f2) < alip,(f) + (1 — a)lip,(f2) = oG} + (1 — @)Gh < aGy + (1 — a)Go.

Up to subsequence, we thus have that lip, (a e (1—a) fg) weakly converges to some limit
function G < aGy + (1 — )Ga, proving the claim.

CLOSEDNESS. Fix a sequence (G,), C L?(m) of asymptotic relaxed slopes for f that strongly
converges to some G € L?(m). Given any n € N, we can pick a sequence (fy m)m C LIP(X)
with fom = f and lip,(fam) = G7, < Gy. Up to subsequence, we have that G’ — G’ for
some G’ € L?(m) with G’ < G. Then we can assume wlog that (lip,( f”m))nm is bounded
in the space L?(m). Since the restriction of the weak topology to any closed ball of L?(m) is
metrizable, by a diagonalisation argument we can extract a subsequence (my,), for which we
have fom, — f and lip,(frm,) — G’ < G, i.e. G is an asymptotic relaxed slope for f.
FormuLA ([10.4). By a diagonalisation argument, there exists a sequence ( fu)n C LIP(X)
such that f, — f in L?(m) and Eio(f) = limy, % i lip2( frn)dm. Up to subsequence, it holds
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that lip,(fn) — G for some G € L?(m). By Theorem for any n € N there exist N,, > n
and (ay, ;)N C [0,1] in such a way that Ef\ﬁ“‘n an; =1 and vaz"n i lip, (fi) = G in L?(m).
Let us now define f,, := EZN:"n i fi for every n € N. Tt is clear that f, — f in L?(m): given
any € > 0, there exists 2 € N such that || f,, — fllL2(m) < € foralln > n, so that accordingly one
has || fo = fll 2(m) < SN i I fi — fll2m) < e M, = e for every n > 7. Note that one
has lip, (fn) < Zf\/:”n i lip, (fi) = G in L?(m), whence (up to a not relabeled subsequence)
it holds that lip,(fn) — G’ < G. Therefore E,o(f) < 3 [(G')?dm < 3 [G?dm < E..(f),
which forces G’ = G and lip,(f,) — G in L?*(m). Hence |Df|., := G is the (unique) element
of minimal L?(m)-norm in the family of all asymptotic relaxed slopes for the function f and

the equality in ((10.4)) is satisfied. Then the thesis is achieved. O

Proposition 10.10 (Cheeger) Let f € W*lg(X) be given. Let G1,Go be asymptotic relaxed
slopes for f. Then min{G1,Ga} is an asymptotic relazed slope for f as well.

Proof. Notice that min{G1,G2} = XgG1 + Xge G2, where E := {G; < G2}. By inner
regularity of the measure m, it thus suffices to show that Xx G1 + Xx< G2 is an asymptotic
relaxed slope for f, for any compact K C X. Fix 7 > 0. Define the cut-off function 7, € L?(m)
as n = (1— d(-,K)/r)+. For any i = 1,2, we can choose (f%),, C LIP(X) such that fi — f
and lip,(f}) — G} < G;. Now call h”, := . fL + (1 —n,)f? € LIP(X) for every n € N. One
clearly has that k7 = f strongly in L?(m). Moreover, given that

hyy = fo+ (L=n0)(f7 = fo) = f2 + 0 (fa = ),
we infer from the Leibniz rule (10.1) that

hpa(h’Z) < hpa(f#,) + (1 - nr)(llpa(fﬁ) + hpa(fﬁ)) + ‘frlz - f?%‘ hpa(]- - 77?“)7

10.5
lipa () < lipu(£2) + 1 (b (1) + o (£2)) + 11 — /2] lipa(n). (105

Up to subsequence, we obtain from (10.5) that lip, (k") - G, for some G, € L?(m) with

G, <min {G} + (1 — n,) (G} + Gb), G +n:-(Gh + Gb)}. (10.6)

Since 7, =1 on K and 7, = 0 on X\ K", where K" := {z € X : d(z,K) < r}, we deduce
from the inequality ((10.6) that

Gr < Xk G|+ Xx\gr Gy + 2 Xgr i (G + G). (10.7)

The right hand side in (10.7) converges in L?(m) to the function Xx G} + Xxe G5 as r N\, 0,
which grants that Xx G1 + Xk G2 is an asymptotic relaxed slope for f, as required. O
It immediately follows from Proposition [10.10| that:

Corollary 10.11 Let f € W*l,f(X) Take any asymptotic relaxed slope G for f. Then the
inequality |D fly o < G holds m-a.e. in X.
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Proposition 10.12 (Chain rule) Let f € W, 2(X) be fived. Let ¢ € C*(R) N LIP(R) be
such that ©(0) = 0, which grants that @ o f € L?*(m). Then po f € W*laz(X) and

’D(cp o f)‘* SN o fIDflva  holds m-a.e. in X. (10.8)
Proof. Pick (fn)n C LIP(X) such that f,, — f and lip,(fs) — |Df|sq in L?(m). It holds that

lip, (¢ o frn) < |¢'| o fulipg(fn) — |¢'| © f|Df|sa strongly in L2(m). (10.9)

Then there exists G € L?(m) such that, possibly passing to a subsequence, lip,(¢ o f,.) — G.
In particular G < |¢'| o f |Dflsq by (10.9)), while the inequality }D(gp o f)|* , < G is granted
by the minimality of ‘D(gp of )‘* - This proves the thesis. g

Remark 10.13 Analogous properties to the ones that had been described in Theorem
can be shown to hold for the minimal asymptotic relaxed slope |Df|.,. This follows from

Proposition [10.10] and Proposition [10.12] by suitably adapting the proof of Theorem |

The vector space W*lf (X) can be endowed with the norm
2 2 2 1,2
HfHW*l,Z(X) = HfHLQ(m) + H’Df‘*7a||[,2(m) for every f € W*,b (X) (10'10)

Then (W*l(f(X), |-l (X)) turns out to be a Banach space. Completeness stems from the
lower semicontinuity of the energy functional E, .

Remark 10.14 Similarly to what done so far, one can define the objects |Df|. and |D f|cnp.
Then it holds that |Df| < |Df|ch < |Dfl« < |Dflsa- [ ]

Besides the fact of granting completeness of W*lg(X), the relaxation procedure we used
to define the energy functional E, , is also motivated by the following observation:

Remark 10.15 Suppose that X is compact. Define
. 2
115 = 112y + [1ipa ()]l 2y for every f € LIP(X).

Hence |- [| is a seminorm on the vector space LIP(X). Now let us denote by W the
completion of the quotient space of (LIP(X), Il - ”W) The problem is that in general the
elements of W are not functions, in the sense that we are going to explain. The natural
inclusion 4 : LIP(X) — L?(m) uniquely extends to a linear continuous map i : W — L2 (m),

but such map is not necessarily injective, as shown by the following example. |

Example 10.16 Take X := [—1, 1] with the Euclidean distance and m := §yg. Consider the
functions fi, fo € LIP(X) given by fi(x) := 0 and fa(x) := z, respectively. Then f; and fo
coincide as elements of L*(m), but || f1 — follz = [l f2lli = 1.
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11 Lesson [29/11/2017]

We present a further notion of Sobolev space on metric measure spaces, which will turn out
to be equivalent to all of the other ones discussed so far.

Given a metric measure space (X,d, m), let us define
I'(X):={y: J— X | J CR non-trivial interval, v AC}. (11.1)

Given any curve v € I'(X), we will denote by Dom(7) the interval where 7 is defined and we
will tipically call I € R and F' € R the inf and the sup of Dom(~y), respectively.
If G: X — [0,+00] is a Borel function and v € I'(X), then we define

/7 G- [ " Gl dt, (11.2)

with the convention that fv G := 400 in the case in which {¢ € Dom(y) : G(v) = +oo} has
positive £!-measure. We call fﬂ/ G the line integral of G along the curve ~.

Definition 11.1 (2-modulus of a curve family) Let I' be any subset of T'(X). Then we
define the quantity Mods(T) € [0, 4+00] as

Mods(T) := inf{/p2 dm ’ p: X — [0,+00] Borel, /p >1 forally € I‘} : (11.3)
gl

We call Moda(I") the 2-modulus of I'. Moreover, a property is said to hold 2-a.e. provided it
is satisfied for every v belonging to some set I' C I'(X) such that Moda(I'¢) = 0.

The 2-modulus Mody is an outer measure on I'(X), in particular it holds that
FCI'Cr(X) = Mody(I') < Mody(T"),
Iy CI'(X), Moda(I'y,) =0 for alln e N = Mody(I') =0, where I' := U ry.
neN

To prove the above claim, fix a sequence (I',),, of subsets of I'(X) and some constant & > 0.
For any n € N, choose a function p,, that is admissible for I',, in the definition of Moda(T';,)
and such that [ p2 dm < Mody(I',,) + /2" Now call p := sup,, p,. Clearly p is admissible
for I := |J,, I'n and it holds that

Mods(T") < /p2dm§ Z/pidmg ZModg(Fn)+2s,

neN neN

whence Mody(I') < >, -y Modz(I',) by arbitrariness of €. Hence Mods is an outer measure.

Remark 11.2 Let us fix a Borel function G : X — [0, +00) such that G € L?(m). We stress
that G is everywhere defined, not an equivalence class. Then fv G < 400 for 2-a.e. 7.
Indeed, call ' := {'y e I'X) : fﬁ/G = —|—oo}. Given any € > 0, we have that p := G is
admissible for T', so that Moda(I') < €2 [ G? dm. By letting £ \, 0, we thus finally conclude
that Mods(T") = 0, as required. [
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Definition 11.3 (2-weak upper gradient) Let f: X — RU {£o0} and G : X — [0, +o0]
be Borel functions, with G € L*(m). Then we say that G is a 2-weak upper gradient for f if

’f(’YF) — f(’y])’ < /G holds for 2-a.e. -, (11.4)
v

meaning that fw G must equal +00 as soon as either ‘f(’y])} = +00 or ‘f(fyp)} = +00.

Remark 11.4 Consider two sets I', TV C T'(X) with the following property: for every v € T,
there exists a subcurve of v that belongs to I'V. Then Mody(T") < Mods(T).

The validity of such fact easily follows from the observation that any function p that is
admissible for IV is admissible even for T'. |

Lemma 11.5 Let G be a 2-weak upper gradient for f. Then for 2-a.e. curve v € I'(X) it
holds that Dom(vy) 3 t — f(v:) is AC and ‘c%(f O’y)t| < G()|3t| for a.e. t € Dom(7).

Proof. Let us denote by I' the set of curves vy for which the thesis fails. Moreover, call

ri= {5 ere \ e = 1600 > [ ¢},

f::{yeF(X)‘ AGz+oo}.

Notice that Mody(I”) = 0 because G is a 2-weak upper gradient for f, while Mody(I') = 0 by
Remark Now fix v € I'\ T, in particular t — G(7;)|4:| belongs to L*(0,1). Then there
exists t,s € Dom(v), s < t such that |f(v) — f(7s)| > fstG(’yr)]"yr\ dr: if not, then v would

satisfy the thesis of the lemma. Therefore Moy € I, whence Mods(I' \ T') < Mody(I”) by
Remark This grants that Mody(T') < Mody(I”) + Mody (I N T) = 0, as desired. O

We thus deduce from the previous lemma the following locality property:

Proposition 11.6 Let G1, Gy be 2-weak upper gradients of f. Then min{G1, G2} is a 2-weak
upper gradient of f as well.

Proof. For i = 1,2, call T; the set of v € I'(X) such that fo~y is AC and |0;(fo7)| < Gi(ve) ||
holds for a.e. t € Dom(vy). Then for every curve v € I'y N Ty we have that f o~ is AC and
that |9;(f o v)| < min{G1(y), G2(12)}|5| holds for a.e. ¢ € Dom(y). By integrating such
inequality over Dom(y) we get

|f(WF) — f(71)| < /min{Gl, Go} for every y € 1 NTy.
”

The thesis follows by simply noticing that Mods (F(X) \ (1N Fg)) =0. d

Theorem 11.7 (Fuglede’s lemma) Let G,G,, : X — [0,4+00], n € N be Borel functions
that belong to L*(m) and satisfy lim,, |G, — Gllz2(m) = 0. Then there is a subsequence (ny)y

such that f7 |G, — G| 50 holds for 2-a.e. . In particular, f7 G, LA wa for 2-a.e. .
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Proof. Up to subsequence, assume that ||G,, — G|| 2m <1 /2" for every n € N. Let us define

1
Ty = {ry e I'(X) ‘ ILm / |G — G| > k} for every k € N\ {0}.
n o0 ~

Observe that f,y |Gp — G| = 0 as n — oo for every v ¢ |J,, I'x, thus to prove the thesis it
is sufficient to show that Moda(I'y) = 0 for any £ > 1. Fix £ > 1. For any m € N, let us
define the function pp, as pm == k>, -, |Gn — G|. For every curve v € I'y, there is n > m
such that f7 |G — G| > 1/k, whence f7 pm > 1, in other words p,, is admissible for T'.
Moreover, one has that [|pmll 2y < k3 p5m 1Gn = Gll2m) < k/2mt for every m € N.
Hence Mody(T';) < ||pm||%2(m) 780, getting the thesis. O

Theorem 11.8 Given any n € N, let Gy, be a 2-weak upper gradient for some function fy.
Suppose further that Gy, — G and f, — f in L*(m), for suitable Borel functions f : X — R
and G : X — [0,+00]. Then there is a Borel function f : X — R such that f(z) = f(z) holds
for m-a.e. x € X and G is a 2-weak upper gradient for f.

Proof. Possibly passing to a not relabeled subsequence, we can assume wlog that f, — f in
the m-a.e. sense. In addition, we can also suppose that fv |G, — G| — 0 holds for 2-a.e. v by
Theorem Call f(x) := lim,, f,,(z) for every z € X. Then f = f holds m-a.e. in X, thus
accordingly f € L? (m). Let us define

I {umo\ /lan—mﬂw, fuo7 is AC, [(fao)'| < Gnov I f°fa11”€N}’
Y
= {3 € D(X) | either | f(3)| < o0 or |f(3p)] < +oc},

I:= {’y e I'(X) ‘ ‘f(’yt)‘ = 400 for every t € Dom('y)}.

Note that Mody(I'“) = 0 because G,, is a 2-weak upper gradient of f, for any n € N.
Furthermore, we have that Mody(I') = 0: indeed, for every ¢ > 0 the function p := ¢|f| is
admissible for I and 1ol 20wy < €llfllL2(m)- We now claim that

‘f(’yp) - f('y])‘ < /G for every y € I'NT". (11.5)
-

To prove it, just observe that ‘f(vp) - f(’)/[)‘ < limy, | fu(yr) = fu(yr)| < lim, f7 G, = wa
for every v € T NTY. We can use ([11.5)) to prove that

For) = Fon] < [ G forevery ye T\ T. (11.6)

Indeed: fix v € '\ T'. There exists ty € Dom(7) such that ’f('yto)‘ < 4o0. Call 4! := ol
We have that v!,7? € I NI, so that (11.5)) yields

[I,to]

2.
and y* := 7‘[to,F]'

F(ve) = FOun)| < [ Fv) = Fom)| + | Fno) = Flm)| < / G+ / G- / G.
Y Y Y

Since Mody (I'(X) \ (T'\ f)) = 0, we deduce from ([11.6) that G is a 2-weak upper gradient of
the function f : X — R, defined by f := X{f<too} f, which m-a.e. coincides with f. ([l
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We now define the Sobolev space WSI}’?(X), where ‘Sh’ stays for Shanmugalingam, who
first introduced such object.

Definition 11.9 We define the Sobolev space Wsll’f(X) as the set of all f € L*(m) such that
there exist two Borel functions f : X — R and G : X — [0,+00] in L?(m) satisfying these
properties: f(z) = f(zx) for m-a.e. x € X and G is a 2-weak upper gradient for f.

We endow the vector space WSII’?(X) with the norm given by

Hfllfyslﬁz(x) = I 2y + G2y for every f € W (X), (11.7)

where the infimum is taken among all Borel functions G : X — [0,400] that are 2-weak upper

gradients of some Borel representative of f.

Remark 11.10 (Minimal 2-weak upper gradient) Given any f € Wslf(X), there exists
a minimal 2-weak upper gradient |D f|gn, where minimality has to be intended in the m-a.e.
sense. In other words, if f is a Borel representative of f and G is a 2-weak upper gradient
for f, then |Df|sn < G holds m-a.e. in X. It thus holds that

2 2 2 1,2
111 = 1By + 1D flsl 2y for every £ € W20, (118)
These statements follow from Proposition and Theorem [11.8 |

Lemma 11.11 Let I' be a subset of AC([0,1],X) such that Moda(I') = 0. Then w*(I') =0

for every test plan 7 on X, where w* denotes the outer measure induced by 7.

Proof. Take p admissible for I'. The function (v,t) — p(y¢)|¥:| is Borel, hence {fy : f7 p> 1}
is a w-measurable set by Fubini theorem. Observe that such set contains I', so that

m<//mﬂw:/VMMWMﬂww
< ([ onemrar) " ([ f s acran
< /Comp(m) <//|%| dm(y dt>1/2</p2dm>l/2.

By arbitrariness of p, we conclude that 7*(T") = 0. O

1/2

Remark 11.12 It holds that

|Dflea > |Df]« > |Dflcn > |Dflsn > |Df], (11.9)
WE2(X) € Wh(X) € WHHX) € W (X) € WH(X). '

To prove |Df|cn > |Dfl|sn, observe that any upper gradient is a 2-weak upper gradient. On
the other hand, to show |Df|gy, > |Df] it suffices to apply Lemma [11.11 |
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Theorem 11.13 (Ambrosio-Gigli-Savaré) Let (X,d, m) be a metric measure space. Then
Lipschitz functions in X are dense in energy in W2(X), namely for every f € WH2(X) there
exists a sequence (f,)n, C LIP(X) N L?(m) such that f, — f and lip,(f,) — |Df| in L*(m),
thus accordingly also lip(f,) — |Df| and |Df,| — |Df| in L*(m).

In particular, we have that W*lﬁ(X) = W2(X) and that the equality |Df|.o = |Df| is
satisfied m-a.e. for every f € WH2(X).

We directly deduce from Theorem |11.13|that all inequalities and inclusions in ((11.9)) are
actually equalities. In other words, all the several approaches we saw are equivalent.

Remark 11.14 In order to prove that |Df|c, = |Df|sn, the following fact is sufficient:

Let G be a 2-weak upper gradient for f and let € > 0. Then there exists (11.10)
an upper gradient G for f such that ||é|!L2(m) < ||G”L2(m) t+e |

To prove it: call " the set of v € T'(X) such that }f(vp) —f(w)’ > f,y G, so that Mody(T") = 0.
We first need to show that

dp: X — [0, +00] Borel such that /,0 = +oo for all y €' and [|p|| 2y <€ (11.11)
v

There exists (pp)n such that [[ p, > 1 and ||pnl| 2w < /2" for alln € Nand y € I'. Thus it

can be easily seen that the function p := )" -, p, satisfies : for every v € I" we have
that f7 p=lmy, oo Doy f7 Pn > limy, o0 m = +00, while HpHLQ(m) <D s ||anL2(m) <e.

Finally, let us call G := G + p. Clearly G satisfies (11.10): if v € T' then va = +o0,
while if v ¢ T then | f(v#) — f(71)] < f7 G < f7 G, i.e. G is an upper gradient of f; moreover,
one has |Gl 2wy < Gl L2(m) + 1Pl 2(m) < Gl L2(m) + €. This concludes the proof. [ ]

12 Lesson [11/12/2017]

Let (X,d,m) be a fixed metric measure space.

Definition 12.1 (L?-normed L*-module) We define an L?(m)-normed L*(m)-module,

or briefly module, as a quadruplet (///, -1z s \) with the following properties:
i) (A, ,) is a Banach space,
ii) the multiplication by L*°-functions - : L*°(m) x .# — . is a bilinear map satisfying

f-(g-v)=(fg)-v forevery f,g € L=(m) and v € M,

(12.1)
l-v=v foreveryv e #,

where 1 denotes the (equivalence class of the) function on X identically equal to 1,
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iii) the pointwise norm |- |: .# — L?(m) satisfies
|[v] >0 m-a.e. for everyv € M,
|f -v] =|fllv] m-a.e. for every f € L°°(m) and v € A, (12.2)
ol , = H|U‘HL2(m) for everyv € A .
For the sake of brevity, we shall often write fv instead of f - v.
Proposition 12.2 Let .# be a module. Then:

D) 1fvllg S Wl @yllvll g for every fe L(m) and v € A .

i) \v = v for every A € R, where \ denotes the (equivalence class of the) function on X
identically equal to \.

iii) It holds that

v+ w| < Jof + [w]
m-a.e.  for every v,w € A and X € R. (12.3)
|[Aof = [Alf]

Proof. 1) Simply notice that

1700 = A 2y < 1 ooy l101 2y = 1 ooy 2]

is verified for every f € L*°(m) and v € .# by and by Holder inequality.

ii) Given any A € R and v € .#, we have that Av = (A)v = A(1v) = Av by and by
bilinearity of the multiplication by L°°-functions.

iii) Fix A € R and v,w € .#. Clearly |\v| = [Av| = |A||v] = |[A|Jv] holds m-a.e. in X as a
consequence of ii). On the other hand, in order to prove that |v + w| < |v| + |w| holds m-a.e.
we argue by contradiction: suppose the contrary, thus there exist a,b,¢c € R with a +b < ¢
and F C X Borel with m(E) > 0 such that

lv| <a
lw| <b holds m-a.e. in E. (12.4)
lv+w| > ¢

Hence we deduce from ([12.4)) that

1/2
IXe(+w)|| , = </ v+ w|? dm> > cem(E)Y?2 > (a4 b)m(E)Y/?
E

1/2 1/2
> </ |v|2dm) + (/ |w|2dm> =|xev| 4, + IXEWw| 4
E E

which contradicts the fact the || - || , is a norm. Therefore (12.3) is proved. O
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Exercise 12.3 Let V, W, Z be normed spaces. Let B: V x W — X be a bilinear operator.

i) Show that B is continuous if and only if both B(v,-) and B(-,w) are continuous for
every v € V and w € W.

ii) Prove that B is continuous if and only if there exists a constant C' > 0 such that the
inequality HB(v,w)HZ < Cjv||y [lwl]y holds for every (v,w) € V x W.

Remark 12.4 It directly follows from property i) of Proposition and from Exercise m
that the multiplication by L°°-functions is a continuous operator. |

Example 12.5 We provide some examples of L?(m)-normed L (m)-modules:
i) The space L?(m) itself can be viewed as a module.

ii) More in general, the space L?(X,B) is a module for every Banach space B. (In the case
in which m is a finite measure, the space L?(X,B) is defined as the set of all elements v
of L(X,B) for which the quantity [ Hv(x)H?B dm(z) is finite.)

iii) The space of L?-vector fields on a Riemannian manifold is a module with respect to the
pointwise operations. Actually, the same holds true even for a Finsler manifold (i.e.,
roughly speaking, a manifold endowed with a norm on each tangent space).

iv) The space of L2-sections of a ‘measurable bundle’ over X (whose fibers are Banach
spaces) has a natural structure of L?-normed L*-module. For instance, consider the
spaces of covector fields or higher dimensional tensors with pointwise norm in L?(m).

Remark 12.6 One can imagine a module ./, in a sense, as the space of L?-sections of some
measurable Banach bundle over X. Cf. Serre-Swan theorem. |

Definition 12.7 Let .# be a module and v € .# . Then let us define

{v =0} := {|v| = 0}. (12.5)

Notice that {v = 0} is a Borel set in X, defined up to m-a.e. equality. Similarly, one can
define {v # 0}, {v =w} for w e A and so on.

It is trivial to check that for any £ C X Borel one has
Xpv=0 <= |v|=0 m-ae. in E. (12.6)

Indeed, Xgv = 0 iff |xgv| , =0 iff [, |v[*dm =0 iff [v| = 0 holds m-a.e. in E.
If (one of) the two conditions in (12.6)) hold, we say that v is m-a.e. null in E.

Remark 12.8 Let .# be a module. Let v € .Z. Suppose to have a sequence (FE,), of Borel
subsets of X such that Xg, v =0 for every n € N. Then v is m-a.e. null in J,, £y, as one can
readily deduce from the characterisation (12.6)). |
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Proposition 12.9 (m-essential union) Let {E;}icr be a (not necessarily countable) family
of Borel subsets of X. Then there exists a Borel set E C X such that

i) m(E;\ E) =0 for everyi €I,

ii) if F C X Borel satisfies m(E; \ F) =0 for alli € I, then m(E \ F) = 0.
Such set E, which is called the m-essential union of {E;}icr, is m-a.e. unique, in the sense
that any other Borel set E with the same properties must satisfy m(EAE’) =0.

Proof. Uniqueness follows from condition ii). To prove existence, assume wlog that m € Z(X)
(otherwise, replace m with a Borel probability measure m such that m < m < m, which can
be built as in the proof of STEP 5 of Theorem . Denote by A the family of all finite
unions of the E;’s and call S := sup {m(A) A€ A}. Therefore there exists an increasing
sequence of sets (A4,), C A such that m(A,) 7 S. Let us now define F :=J,, Ap. Clearly E
satisfies 1): if not, there exists some ¢ € I such that m(E; \ E) > 0, whence

S=m(E)<m(EUE;) = li_)m m(A, UE;) <SS,

which leads to a contradiction. Moreover, the set F can be clearly written as countable union
of elements in {E;}icr, say E = J;c; Ej for some J C I countable. Hence for any F' C X
Borel with m(E; \ F') = 0 for each i € I, it holds that

m(E\F) <> m(E;\ F) =0,
jed
proving ii) and accordingly the existence part of the statement. ([l

Given any v € ., it holds that {v = 0} can equivalently described as the m-essential
union of all Borel sets £ C X such that Xgv = 0.

Example 12.10 Define E; := {i} for every i € R. Then the set-theoretic union of {E;}icr

is the whole real line R, while its £!-essential union is given by the empty set.

Definition 12.11 (Localisation of a module) Let .# be a module. Let E be any Borel
subset of X. Then we define

//‘EZ:{XE’U:UG%}Q.//. (12.7)

It turns out that .# B is stable under all module operations and is complete, thus it is a
submodule of .Z .

Proposition 12.12 Let S be any subset of A . Let us define

M (S) := M -closure of 8 := {Z fiv;

=1

neN, (fi)izy © L=(m), (vi)is; C 5} - (128)

Then #(S) is the smallest submodule of A containing S.

Proof. We omit the simple proof of the fact that .#(S) inherits from .# a module structure.
Moreover, any module containing the set .S must contain also 8 and must be closed, whence

the required minimality. (|
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Definition 12.13 (Generators) The module .#(S) that we defined in Proposition is
called the module generated by S. Moreover, if E C X is Borel and ///(S)|E = ///|E, then
we say that S generates .# on E.

Remark 12.14 The space L?(m), viewed as a module, can be generated by a single element,
namely by any L?(m)-function which is m-a.e. different from 0. |

Proposition 12.15 Let V be a vector subspace of M. Then # (V) is the M -closure of

n
V.= {EXEiUi

=1

n € N, (E;)i—, Borel partition of X, (v;)i; C V} . (12.9)

Proof. The inclusion cl 4(V) C .# (V) is trivial. To prove the converse inclusion, since V and
accordingly also cl (V) are vector spaces, it suffices to show that fv € cl (V) whenever we
have f € L®(m) and v € V' \ {0}. Given any ¢ > 0, pick a simple function g = > " | a; X,
such that [|f — gl pec(m) < /[0l 4~ Then [[fv—gv| , <eand gv =371, Xg,(a;v) €V, as
required. Hence the thesis is achieved. O

13 Lesson [13/12/2017]

Remark 13.1 Let .# be a module. Then the pointwise norm |-| : .# — L?(m) is continuous.
Indeed, since ||v] — |w|| < |[v — w| holds m-a.e. for any v,w € .# by (12.3), one immediately
deduces that |||v] — \w|HL2(m) < |v —w| , for every v,w € 4. [

Theorem 13.2 (Cotangent module) Let (X,d, m) be a fized metric measure space. Then
there exists a unique couple (L*(T*X),d), where L*(T*X) is an L*(m)-normed L™ (m)-module
and d : S*(X) — L?(T*X) is a linear operator, such that

i) |df| = |Df| holds m-a.e. for every f € S*(X),
ii) L*(T*X) is generated by {df : f € S*(X)}.

Uniqueness is intended up to unique isomorphism: if another couple (/ZZ,H) satisfies the same
properties, then there is a unique module isomorphism ® : L*(T*X) — .4 such that ®od = d.
We call L?>(T*X) the cotangent module associated to (X,d, m) and d the differential.

Proof. UNIQUENESS. Fix any couple (/7,5) that satisfies both i) and ii). We claim that for
every f,g € S?(X) and E C X Borel it holds that

df =dg m-ae. on E <= df=dg mae. onE. (13.1)

Indeed, df = dg m-a.e. on E if and only if [d(f — g)| = |D(f — g)| = |d(f — g)| m-a.c. on E if
and only if df = dg m-a.e. on E. Now let us define

V= {Z X, df;
=1

o {Zx&aﬁ
=1

n € N, (E;)"; Borel partition of X, (f;)"; C 82(X)} :

n € N, (E;)i—; Borel partition of X, (f;)i; C SQ(X)} ,
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which are vector subspaces of L?(T*X) and /// respectively. Note that any module isomor-
phism & : L2(T*X) — M satisfying ®od = d must necessarily restrict to the map ® : V — V
given by

P (Z inde-> = Zinafi for every > Xgdf; € V. (13.2)
=1 i=1

i=1
Well-posedness of ([13.2)) stems from (13.1)). Moreover, the m-a.e. equalities

n _ n n n
=1 =1 =1 i=1

grant that ® preserves the pointwise norm, whence also the norm. Since V is dense in L?(T*X)

by property ii) for (LQ(T*X),d), the linear continuous map ® : V — .# can be uniquely
extended to an operator ® : L?(T*X) — M, which is linear continuous and preserves the
pointwise norm by Remark In particular, it is an isometry, whence it is injective and it
has closed image. Given that ®(V) = V is dense in M by property ii) for (//Al: d), we deduce
that ® is also surjective. In order to conclude, it only remains to show that ® is L°°(m)-linear.
To do so, first notice that ®(Xgv) = Xg ®(v) is satisfied for every E C X Borel and v € V.
Since ® and the multiplication by L°°-functions are continuous, the same property holds for
every v € L?(T*X), whence ®(fv) = f ®(v) for all f: X — R simple and v € L*(T*X) by
linearity of ®. Finally, the same is true also for every f € L°°(m) by density of the simple
functions in L®°(m). This completes the proof of the uniqueness part of the statement.
EXISTENCE. Let us define the pre-cotangent module as the set

Pem = { {(Es, f)}1_, ‘ n €N, (E;)j, Borel partition of X, (f)i-, € $*(X)}.

For simplicity, we shall write (E;, f;); instead of { E;, fi) } . We introduce an equivalence
relation on Pcm: we say (E;, fi)i ~ (F}, g;); if and only if |D(f2 gj)| = 0 m-a.e. in E; N F;
for every i, 7. Let us denote by [E;, fi]; € Pcm/ ~ the equivalence class of (E;, f;); € Pcm.

We now define some operations on the quotient Pcm/ ~, which are well-defined by locality
of minimal weak upper gradients (recall Theorem [8.7)):

(B, fili + [Fj, g5l5 -= [E: O Fy, fi + g5lig,
alE;, fili = [Ei, a fili,
<ZO@XF) Ez,fz]z = [E ijaajfi]i,j,
(13.3)
[Es, fili| = ZXEi|Dfi’ m-a.e. in X,

1/2
|1Es, fili]] := Hl[Ehfi]i‘HLQ(m) = (Z/E \Dfi|2dm> :

The first two operations in ([13.3]) give Pcm/ ~ a vector space structure, the third one is the
multiplication by simple functions - : Sf(m) x (Pcm/ ~) — (Pcm/ ~) (where Sf(m) denotes
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the space of all simple functions on X modulo m-a.e. equality), the fourth one is the pointwise
norm | -|: (Pecm/ ~) — L?(m) and the fifth one is a norm on Pcm/ ~.

We only prove that || - || is actually a norm on Pem/ ~: if ||[Es, fili|| = 0 then |Df;] =0
holds m-a.e. on E; for every i, so that (E;, f;); ~ (X,0). Moreover, it directly follows from
the definitions in that Ha [E;, fl]lH = |a| H[EZ, fZLH Finally, one has

1E:s fili + [Fy, g3lsl| = [1B: 0 Ey, fi+ g3ligll = || D Xmnr, | D(fi + 97)]
W L?(m)
" L2m) L2(m)
S DRI N ) Ry
‘ L?(m) J L2(m)
which is the triangle inequality for || - ||. Hence | - || is a norm on Pcm/ ~.
Let us denote by (L*(T*X), || - HL2(T*X)) the completion of (Pcm/ ~, || - ||). One has that
the operations |- |: (Pcm/ ~) — L?(m) and - : Sf(m) x (Pcm/ ~) — (Pcm/ ~), which can

be readily proved to be continuous, uniquely extend to suitable

|-+ L(T*X) — L*(m),
-1 L®(m) x L*(T*X) — L*(T*X),

which endow L?(T*X) with the structure of an L?(m)-normed L°(m)-module.
Finally, let us define the differential operator d : S*(X) — L%(T*X) as df := [X, f] for
every f € S?(X), where we think of Pcm/ ~ as a subset of L?(T*X). Note that

dlaf+B8g9) =X, af+Bgl=a[X, fl+BX,gl=adf +8dg VfgeS*X), a,BER,

proving that d is a linear map. Also |df| = |[X, f]| = |Df| holds m-a.e. for any f € S*(X),
which shows the validity of i). To conclude, observe that the family of all finite sums of the
form Y"1 | Xg,dfi, with (E;)"; Borel partition of X and (f;)™; C S*(X), coincides with the
space Pcm/ ~, thus it is dense in L?(T*X) by the very definition of L?(T*X), proving ii) and
accordingly the thesis. O

Theorem 13.3 (Closure of the differential) Let (f,), C S?(X) be a sequence that point-
wise converges m-a.e. to some limit function f. Suppose that df, — w weakly in L*(T*X) for
some w € L2(T*X). Then f € S*(X) and df = w.

Moreover, the same conclusion holds if (fn)n € W12(X) satisfies f, — f and df, — w
weakly in L*(m) and L*(T*X), respectively.

Proof. By Mazur’s lemma (recall Theorem [10.1]) we can assume wlog that df,, — w in the
strong topology of L?(T*X). In particular, |Df,| = |df,| — |w| strongly in L?*(m) as n — oo,
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whence we have that f € S?(X) by Proposition Moreover, it holds that

lim ||df — danL2 Tex) S hm hm Hd fn)HLQ(T*X)

n—oo

= lim lim H}d fn)‘HLz(m) =0,

n—o0 k—s

so that df = w as required. Finally, the last statement follows from the first one by applying
twice Mazur’s lemma and by recalling that any strongly converging sequence in L?(m) has a

subsequence that is m-a.e. convergent to the same limit. O

Remark 13.4 We point out that the map

W2(X) — L*(m) x L*(T*X),

(13.4)
[ (f,df),

is a linear isometry, as soon as the target space L?(m) x L?(T*X) is endowed with the product

norm H(f,w)H2 = HfH?y(m) + ||°J”%2(T*X)‘ "

14 Lesson [18/12/2017]

Theorem 14.1 (Calculus rules for the differential) The following hold:
A) LocAriTy. Let f,g € S?(X) be given. Then df = dg holds m-a.e. in {f = g}.
B) CHAIN RULE. Let f € S?(X) be given.

B1) If a Borel set N C R is L'-negligible, then df = 0 holds m-a.e. in f~1(N).

B2) If I C R is an interval satisfying (fxm)(R\ 1) =0 and ¢ : I — R is a Lipschitz
function, then po f € S*(X) and d(po f) = @' o fdf. The expression @' o fdf is
a well-defined element of L*(T*X) by B1).

C) LEIBNIZ RULE. Let f,g € S*(X) N L>®(m) be given. Then fg € S*(X) N L>®(m) and it
holds that d(fg) = fdg + gdf.

Proof. A) Note that |df — dg| = |D(f — g)| = 0 holds m-a.e. in {f — g = 0} by Theorem

whence df = dg holds m-a.e. in {f = g}, as required.

B1) We have that |[df| = |Df| = 0 holds m-a.e. on f~}(N) by Theorem so that df =0

holds m-a.e. on f~1(N).

B2) The Lipschitz function ¢ : I — R can be extended to a Lipschitz function p : R — R

and the precise choice of such extension is irrelevant for the thesis to hold because f~1(R\ I)

has null m-measure. Then assume wlog I = R. We know that po f € S?(X) by Theorem
If ¢ is a linear function, then the chain rule just reduces to the linearity of the differential.

If ¢ is an affine function, say that ¢(t) = at +b, then d(po f) =d(af +b) = adf = ¢’ o fdf.

Now suppose that ¢ is a piecewise affine function. Say that (I,), is a sequence of intervals
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whose union covers the whole real line R and that (), is a sequence of affine functions such
that ¢|, =ty holds for every n € N. Since ¢’ and 9!, coincide £!-a.e. in the interior of I,,,
we have that d(po f) = d(¢n 0 f) =, o fdf = ¢’ o fdf holds m-a.e. on f~1(I,) for all n,
so that d(po f) = ¢’ o fdf is verified m-a.e. on |J,, f~(I,) = X, as required.

To prove the case of a general Lipschitz function ¢ : R — R, we want to approximate ¢
with a sequence of piecewise affine functions: for any n € N\ {0}, let us denote by ¢,, the
function that coincides with ¢ at {i/n : i € Z} and is affine in the interval [i/n, (i + 1)/n]
for every i € Z. One can readily prove that Lip(y,) < Lip(p) for all n. Given any i € Z, we
deduce from the fact that ¢/,(t) = £/""/" ¢’ d£* holds for all ¢ € [i/n, (i +1)/n] and from
an application of Jensen’s inequality that

(i+1)/n 1 (i+1)/n
[ et =1 T act
i n\Ji

/n
(i+1)/n
:/ |<p’|2d£31.

n

2 .
1 (i+1)/n
< ][ l¢'|? d.ct
n .
i/n (14.1)

Now fix m € N. It can be readily checked that ¢, — ¢ strongly in L?(—m,m), while
grants that [ |of|2dLt < [ |¢/|2dLT for every n, whence there is a subsequence (ng)p
such that @%k — g weakly in L?(—m,m) for some g € L?(—m,m). This forces g = cp’|(7m,m),
so that the original sequence (),),, satisfies ¢!, — ¢’ weakly in L?(—m, m). Moreover, it holds
that [ |¢'[2dLt < lim, [ [of[2dLt < [ |¢/|2dLY, thus necessarily @], — ¢’ strongly
in L?(—m,m). In particular, there exists a subsequence (ny) such that ¢, (t) — ¢'(t) for
a.e. t € (—m,m). Up to performing a diagonalisation argument, we can therefore build a
sequence (), such that

(¢n)n € LIP(R) are piecewise affine functions with sup Lip(¢,) < Lip(p),
neN (14.2)
on(t) — o(t) for every t € R and ¢/, (t) — ¢/(t) for L'-a.e. t € R.

Finally, notice that [ |¢), — ¢'[* o f|df[*dm — 0 by (14.2), by B1) and by an application
of the dominated convergence theorem, in other words ¢!, o fdf — ¢’ o fdf in the strong
topology of L?(T*X). Since also grants that ¢, o f — @ o f pointwise m-a.e. in X and
since d(¢y, o f) = ¢), o fdf by the previous part of the proof, we deduce from Theorem m
that d(pn o f) — ¢’ o fdf in L2(T*X), thus accordingly d(¢ o f) = ¢’ o fdf.

C) We already know that fg € S2(X)N L% (m) by Theorem In the case in which f,g > 1,
we deduce from property B2) that

d(fg)

fg

whence we get d(fg) = fdg+ gdf by multiplying both sides by fg.
In the general case f,g € L*°(m), choose a constant C' > 0 so big that f + C,g+ C > 1.

— dlog(fg) = d(log(f) + log(g)) = dlog(f) + dlog(g) = df +
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By the previous case, we know that

Ad((f+C)g+0C) =(f+C)d(g+C) + (g+C)d(f +O)

=(f+C)dg+(g+C)df (14.3)
= fdg+gdf+Cd(f +9),
while a direct computation yields
d((f+CO)g+C)) =d(fg+C(f +g) +C*) =d(fg) + CA(f + g). (14.4)
By subtracting ((14.4) from (14.3)), we finally get that d(fg) = fdg+gdf, as required. Hence
the thesis is achieved. O

Proposition 14.2 The set {df : fe Wl’z(X)} generates the tangent module L*(T*X).

Proof. Denote by .# the module generated by {d f:fe WLQ(X)}. It clearly suffices to
prove that df € .# whenever f € S?>(X). Fix any Z € X. For any n,m € N, let us call

fo = (fVn)A(=n) € L¥(m),
N = (1 —d(-, Bn(2))) 7,
fom = N fn € L*(m).
Since the function f,, can be written as ¢, o f, where ¢, is the 1-Lipschitz function defined

by @n(t) := (t Vn) A (—n), we have that f,, € S*(X) by property B2) of Theorem thus
accordingly fn, € W12(X) by property C) of Theorem More precisely, it holds that

dfn = 90;1 o fdf = X{|f|§n} df,
X B (z) 4fnm = XB,,(z) (nm dfn, + fa dﬁm) = Xp,.(z) Lfn;

so that df = dfnm holds m-a.e. in Apy = 71 ([=n,n]) N By (Z). Given that m(X\ Appm) \, 0
as n,m — oo, we deduce from the dominated convergence theorem that Xa,, dfpm — df
in the strong topology of L?(T*X) as n,m — oo. Since each X4, dfnm, belongs to .4, we
conclude that df € .# as well. This proves the thesis. O

Proposition 14.3 Let (X,d, m) be a metric measure space. Then there exists a unique (up
to unique isomorphism) couple (.///,H), where . is a module and d Wh2(X) — A is a
linear map, such that \af\ = |Df| holds m-a.e. for every f € WY2(X) and such that .4 is
generated by {df : f € W'*(X)}.

Moreover, given any such couple there exists a unique map V : A4 — L*(T*X), which is
a module isomorphism, such that

wh2(X) —4—

j LP (14.5)

S*(X) ——— L*(T*X)

1s a commutative diagram.
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Proof. EXISTENCE. One can repeat verbatim the proof of the existence part of Theorem [13.2
Otherwise, call .# the submodule of L*(T*X) that is generated by {df : f € WH*(X)} and
define d := d|W172(X).
UNIQUENESS. In order to get uniqueness, it is clearly enough to prove the last part of the

It can be easily seen that (.#,d) satisfies the required properties.

statement. By the very same arguments that had been used in the proof of the uniqueness
part of Theorem one can see that the requirement that ¥ is an L°°(m)-linear operator
satisfying \ll(af) = df for any f € W12(X) forces a unique choice of ¥ : .# — L?(T*X).
The surjectivity of ¥ stems from Proposition [14.2] O

Proposition 14.4 Fiz d € N\ {0}. Let L*(R¢, (R%)*, £%) denote the space of all the L*(£%)
1-forms in RY. Let d : WH2(RY) — L2(R%, (RY)*, £L9) be the map assigning to each Sobolev
function f € WH2(R?) its distributional differential. Then

<L2 (RY, (R, £%), a) ~ (LA(T*RY), d), (14.6)

in the sense that there ezists a unique module isomorphism ® : L?(T*R?) — L2 (R4, (RY)*, £9)
such that ® od = d.

Proof. We know by Theorem that |df| = |Df| holds £%a.e. for every f € W12(R?).
Moreover, for any bounded Borel subset B of X and any w € (R%)*, there exists (by a cut-off
argument) a function f € WH2(R9) such that df = w holds £%a.e. in B. Hence the normed
module L? (Rd, (R%)*, Ld) is generated by the elements of the form Xpw. We thus conclude
by applying Proposition [14.3 (]

15 Lesson [20/12/2017]

Let us denote by L°(m) the vector space of all Borel functions f : X — R, which are
considered modulo m-a.e. equality. Then L°(m) becomes a topological vector space when
endowed with the following distance: choose any Borel probability measure m’ € £(X) such
that m < m’ < m (for instance, pick any Borel partition (E,), made of sets having finite

positive m-measure and call m’ := 3" %) and define

dro(f,g) == / |f —g|Aldm’ for every f,g € L°(m). (15.1)

Such distance may depend on the choice of m’, but its induced topology does not, as we are
going to show in the next result:

Proposition 15.1 A sequence (f,)n, € L°(m) is dyo-Cauchy if and only if

for everye >0 and E C X

0 ‘
Borel with m(E) < 4.

lim m(Eﬂ{|fn—fm| >5})

n,Mm—00

(15.2)



Proof. NECESSITY. Suppose that holds. Fix € > 0. Choose any point Z € X, then
there exists R > 0 such that m’ (BR(:E)) > 1 — . Recall that m is finite on bounded sets by
hypothesis, so that m(B R(:E)) < +o00. Moreover, since m’ is a finite measure, we clearly have
that Xp, ) ‘é—“; € L'(m). Now let us call App(e) the set Br(Z) N {|fn — fm| > €}. Then
property grants that X4, ) — 0in L'(m) as n,m — oo, Whence an application of the
dominated convergence theorem yields

— — dm’

lim m'(Aym(e)) = lim X A (e) XBg () Im dm = 0. (15.3)

n,1M—+00 7,M—00

Therefore we deduce that
/]fn—fm\/\ldm’:/ \fn—fm]/\ldm’Jr/ o — fonl A1
X\BR(Z) Br(%)

§a+/ yfn—fm\/\ldm’Jr/ |fn = f| A 1dm’
@)N{|frn—fm|<e}

Anm(g)

<2e+m (Ann(e)),

from which we see that limy, ;,, dpo(fn, fn) < 2¢ by . By arbitrariness of ¢ > 0, we
conclude that lim,, ., djo(fn, fm) = 0, which shows that the sequence (f,,), is djo-Cauchy.
SUFFICIENCY. Suppose that (f,), is dro-Cauchy. Fix any € € (0,1) and a Borel set E C X
with m(E) < +o0. Hence the Cebysév inequality yields

dro(fn, fm)

3

W ({1 = il > ) =00 ({0 = Sl A1> ) <2 [ 1= Sl A 10 =

so that limy, m, w'({|f, — fm| > €}) = 0. Finally, observe that Xp 5= (m’), whence

dm
m(Eﬂ{|fn—fm’ >E}> :/ d 7 X{|fn— fm|>5}dm 20

by dominated convergence theorem. Therefore ((15.2)) is proved. O

Remark 15.2 Recall that two metrizable spaces with the same Cauchy sequences have the
same topology, while the converse implication does not hold in general. For instance, consider
the real line R endowed with the following two distances:

dl(xvy) = ’.’IJ - y|7

for every z,y € R.
da(,y) = |arctan(z) — arctan(y)|,

Then d; and dy induce the same topology on R, but the dg-Cauchy sequence (z,), C R
defined by x,, := n is not di-Cauchy. |

We now show that the distance djo metrizes the convergence in measure:

Proposition 15.3 Let f € L%(m) and (fn), € L%(m). Then the following are equivalent:
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i) it holds that dro(fn, f) = 0 as n — oo,

ii) given any subsequence (M )m, there exists a further subsequence (nm, )i such that the
limit limy, fy,, (z) = f(x) is verified for m-a.e. x € X,

iii) we have that lim, m(E N {|fn — f| > €}) = 0 is satisfied for every e > 0 and E C X
Borel with m(E) < +o0,

iv) we have that lim, W' ({|f, — f| > €}) = 0 for every e > 0.

Proof. i) = ii) Since | f,,, = fIAl = 0in L' (w'), there is (ny, ) such that | fn,, —f|(z)A1 = 0
for m’-a.e. z € X, or equivalently f,,, (z)— f(z) for m-a.e. z € X.

ii) = iii) Fix (nm)m, € > 0 and £ C X Borel with m(E) < 4o00. Since X{| frm, ~F1>e} = 0
pointwise m-a.e. for some (my), and Xg € L'(m), we apply the dominated convergence
theorem to deduce that limy [ Xg X{\ank —f|>eydm =0, i.e. limnm(E N {]fn — f] > E}) =0.
iii) = iv) Fix § > 0 and Z € X, then there is R > 0 such that m’(X\ Br(z)) < 4. Exactly as
we did in ([15.3), we can prove that the fact that lim, m(Bgr(z) N {|f, — f| > €}) = 0 implies
that lim, m’(Bg(z) N {|f, — f| > €}) = 0 as well. Therefore

S ! ({[fn = f1 > 2}) <0+ Tim w'(Br(@) 0 {lfn = f1 > }) =6

By letting § \, 0, we thus conclude that lim, w’({|f, — f| > £}) = 0, as required.
iv) = i) Take any ¢ € (0,1). Notice that

dLo(fn,f):/|fn—f|A1dm’:/ \fn—f/\ldm’+/ o — fI A 1dnt

Ufn—fl1<e} {lfn—=F1>¢}
<e+w'({|fn—f] >¢€}),

whence lim,, d;o(fn, f) < €, thus accordingly lim,, d;o(f,, f) = 0 by arbitrariness of e. 0

In particular, Proposition m grants that the completeness of L°(m) cannot depend on
the particular choice of the measure m'.

Remark 15.4 The inclusion map LP(m) < L°(m) is continuous for every p € [1,00].

Indeed, choose any m’ € Z(X) with m < m’ < m and define djo as in (15.1). Now take
any sequence (fp)n in LP(m) that LP(m)-converges to some limit f € LP(m). In particular,
we have that f,, — f in LP(m’), so that

dro(fu, f) = / |fo = fIATdm' < / | fo = fldn <[ fo = Fll oy — O,
which proves the claim. |
Exercise 15.5 Prove that LP(m) is dense in L%(m) for every p € [1, 00].

Proposition 15.6 The space (Lo(m),dLo) 1s complete and separable.
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Proof. COMPLETENESS. Fix a djo-Cauchy sequence (f,), € L°(m) and some ¢ > 0. Then
there exists a subsequence (ng)y, such that w’({|fn,,, — fn.| > 1/28}) < /2" holds for all k.
Call Ag := {|frpss — fre] > 1/2%} and A := [J, Ay, so that m'(A) < e. Given any z € X\ A,
it holds that | fn, ,(x) — fn, ()| < 1/2" for all k, in other words (f, ()), € Ris a Cauchy
(thus also converging) sequence, say fy,(z) — f(z) for some f(z) € R. Up to performing
a diagonalisation argument, we have that f,, — f pointwise m’-a.e. for some f € L%(m).
Therefore Proposition m grants that dyo(fn, f) — 0, as required.

SEPARABILITY. Fix f € L%(m). Take any increasing sequence (E,), of Borel subsets of X
having finite m-measure and such that X = (J,, E,. Denote f, := ((Xg, f) An) V (—n) for
every n € N. By dominated convergence theorem, we have that f, — f in L%(m). Moreover,
it holds that (f,)n, € L'(m). Hence we get the thesis by recalling Remark Exercise m
and the fact that L'(m) is separable. O

Remark 15.7 Notice that djo(f,g) = dpo(f + h,g + h) for every f,g,h € L°(m). However,
the distance dyo is not induced by any norm, as shown by the fact that dyo(A f,0) differs
from |A|dzo(f,0) for some A € R and f € L°(m). [ |

Exercise 15.8 Suppose that the measure m has no atoms. Let L : LY(m) — R be linear and
continuous. Then L = 0.

Definition 15.9 (L’-normed module) Let (X,d,m) be a metric measure space. We define
an L%(m)-normed module as any quadruple (///0,7', - |), where

i) (#°, 1) is a topological vector space,

i) the bilinear map -: L°(m) x 4% — 4" satisfies f-(g-v) = (fg)-v and 1-v = for
every f,g € L%(m) and v € .#°,

iii) the map | -|: .#° — L°(m), which satisfies both |v| > 0 and |f - v| = |f||v| m-a.e. for
every v € A° and f € L°(m), is such that the function d_yo : MO x #° — [0,+00),
defined by

d yo(v,w) := / v —w|Aldm’  for somem’ € 2(X) withm <m' <m, (15.4)
is a complete distance on .#° that induces the topology T.

Remark 15.10 The topology 7 in the definition of an L°-normed module does not depend
on the particular choice of the measure m’. Indeed, it holds that a given sequence (v,), C .#°

is d_yo-Cauchy if and only if

for every e >0 and £ C X

T (B0 {Jon— vm| > 2} ) =0
{lvn — vl ! Borel with m(E) < +o0.

n,Mm—00

The previous statement can be achieved by arguing as in the proof of Proposition |
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Definition 15.11 (L°-completion) Let .# be an L*(m)-normed module. Then we define
an L°(m)-completion of .# as any couple (A°,i), where #° is an L°(m)-normed module
and i : M — H° is a linear operator with dense image that preserves the pointwise norm,
i.e. such that the equality ‘z(v)’ = |v| holds m-a.e. for everyv € A .

Remark 15.12 Let .#° be an L%(m)-normed module. Then

|-|:.#° = L°m) is continuous,

15.5
: Lo%(m) x 4% — .#° is continuous. (15.5)

To prove the first in (15.5)), notice that |v +w| < |v| + |w| holds m-a.e. for any v,w € .Z°, so
dro(|v], Jw]|) = / Hv[ — [w|| Aldm’ < / |v —w|Aldm' =d g o(v,w).

To prove the second in (15.5)), suppose that f,, — f and v, — v in L°(m) and .#Z°, respectively.
We aim to show that f,v, — fv in .#°. First of all, observe that

| fovn — fo] <|fullon — v+ |v||fn — f] holds m-a.e. in X. (15.6)
We claim that
. i /
¥6>0 IM>0: lim w'({|fa] > M}) <. (15.7)

Clearly, given any 6 > 0 there exists M > 1 such that w’({|f| > M —1}) < é. Hence
Ti !/ / T !/
nh_)rgom({|fn]>M}) < m'({|f] >M—1})+nh_>rgom ({Ifn = fI>1}) <,
which proves . Now let € > 0 be fixed. Given any 6 > 0, take M > 0 as in , SO
@m’({]fnﬂvn —v|>¢/2}) < @m’({|fn| > M}) —I—@m’({\vn —v|>¢e/(2M)}) <.

Hence lim, m’({|fy||vn — v| > £/2}) = 0 by letting 6 \, 0. In an analogous way, we can see
that also lim, w’({|v||f, — f| > /2}) = 0. Therefore (15.6) yields

e ({ fyvn — fo] > €}) < i’ ({|fullon — o] > e/2}) + Tonm' ({Jol| fu — f| > ¢/2}) =0,
which proves that f,v, — fv in .#°, as desired. [ |

Proposition 15.13 (Existence and uniqueness of the L’-completion) Let .# be any

given L?(m)-normed module. Then there exists a unique L°(m)-completion (.#°,i) of M .
Uniqueness has to be intended up to unique isomorphism, in the following sense: given any

other L°(m)-completion (////\6,?) of A , there is a unique module isomorphism V : . #° — M0

such that
\ [ (15.8)

1s a commutative diagram. Moreover, it holds that
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i) the map i: M — MO is continuous and i(fv) = fi(v) for all f € L°°(m) and v € A,
ii) i(.#) coincides with the set of all v € .#° such that |v| € L?(m).

Proof. 1) Since ‘z(v)’ = |v| holds m-a.e. for every v € .#, we deduce that H|i(v)|HL2(m) = ||v|l 4
for every v € .#. Hence if (v,), C 4 converges to v € .4 then H\z(vn - v)|HL2(m) — 0, so
that d_go (i(vy),i(v)) = dpo(|i(vn — v)[,0) = 0 by Remark m
Moreover, we have that X i(v) = i(Xg v) for every £ C X Borel, indeed
Xpi(v) - i(Xp v)| = { ‘z(v) —i(Xgv)| = |i((1 = Xp)v)| = Xgelv| =0 m-a.e. on E,
li(xgv)| = [Xgv| = Xg|v]| =0 m-a.e. on E°.
By linearity of i, we immediately see that fi(v) = i(fv) for any simple function f: X — R,
thus also for every f € L°(m) by continuity of ¢ and Remark
UNIQUENESS. The choice ¥ (i(v)) := i(v) for every v € . is obliged. Moreover, we have that
the equalities }z(v)‘ =|v| = |;(v)‘ hold m-a.e. in X for every v € .#. Hence

4 (W), (i) = [ [0 ~Tw)| A 14w = [ Jo—u|n 10w
_ / [i(v) — i(w)| A 1w’ = d_g0(i(v), i(w))

is satisfied for every v,w € .#, which shows that ¥ : i(.#) — i(.#) is an isometry, in
particular it is continuous. Since i(.#) is dense in .#", we can uniquely extend ¥ to some
map ¥ : . Z° — MO , which is a linear isometry. Furthermore, ¥ preserves the pointwise norm
and the multiplication by L°(m)-functions by i) and Remark while it is surjective by
density of i(.#) in M°. Therefore this (uniquely determined) map ¥ is module isomorphism
satisfying property .

EXISTENCE. Define the distance dg on .# as do(v,w) := [ |[v —w| A 1dm’ and denote by .Z°
the completion of (.Z,dy). It can be readily proved that

do(v1 + w1, v2 + wa) < do(v1,ve) + do(wr, w2),
do(Av, Aw) < (|A]'V 1) do(v, w),
do(Jv], [w]) < do(v,w),
(fu)n L°(m)-Cauchy, (v,), do-Cauchy = (f,vn)n do-Cauchy.
The first two properties in grant that the vector space structure of .# can be carried
over to .#°, while the third one and the fourth one show that we can extend to .#Z° the
pointwise norm and the multiplication by L°(m)-functions, respectively.

i) It clearly suffices to prove that i(.#) 2 {v € .#° : |v| € L*(m)}. To this aim, let us fix
any v € .#° with |v| € L?(m). There exists (v, ), C .# such that i(v,) — v in .#°. Define

(15.9)

v .
Wn = X{Ji(vn)|>0} ’z(’vl)| i(vp) € M° for every n € N.

Notice that [wn| = X{ji(u,)>03 [v] € L?(m) for every n € N. Moreover, one can easily prove
that (wp), C i(#). Since |w, —v| — 0 in L?(m) by dominated convergence theorem, we
thus conclude that v € i(.#) as well. O
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16 Lesson [08/01/2018]

Proposition 16.1 Let (X, d, m) be a metric measure space. Then there exists a unique (up to
unique isomorphism) couple (.#°,d%), where .#° is an L°-normed module and d° : S% (X) —
MO is a linear map, such that |d°f| = |Df| holds m-a.e. for every f € S2 (X) and such that

loc

LO-linear combinations of elements in {dof : fe SIQOC(X)} are dense in A°.
Moreover, given any such couple there exists a unique map ¢ : L*>(T*X) — .#°, which is

L°-linear, continuous, preserving the pointwise norm such that

wi2(X) —4 L2(T*X)

j lb (16.1)

(X) — MO

82

loc

is a commutative diagram. Moreover, the image of L*>(T*X) in M via ¢ is dense.

Proof. UNIQUENESS Follows along the same lines of Theorem [[3.2] For EXISTENCE we
consider the L%-completion (.#°,.) of L*(T*X) and recall that for any f € S? (X) there is
a partition (E,) of X and functions f, € W12(X) such that f = f, m-a.e. on E, for every
n € N. It is clear that the series Y. Xg,¢(df,) converges in .Z° and the locality of the
differential grants that its limit, which we shall call d°f, does not depend on the particular
choice of (Ey), (fn).

Then the identity |d°f| = |Df| follows from the construction and the analogous property
of the differential. Also, we know that L>-linear combinations of {df : f € W1?(X)} are
dense in L?(T*X) and that +(L?(T*X)) is dense in .#°. Thus L*-linear combinations of
{i(df) =d°f : f € WH2(X)} are dense in .Z°.

This construction also shows the existence and uniqueness of ¢ as in . O

Lemma 16.2 (Essential supremum) Let f; : X — R U {£oo} be given functions, i € I.
Then there exists a unique (up to equality m-a.e.) function g : X — R U {00} such that

i) g > fi m-a.e. for everyi € I,
it) if h > f; m-a.e. for every i € I then h > g m-a.e..

Moreover, there is an at most countable subfamily (fin) of (fi)ier such that g = sup,, fi,.
Such g is called essential supremum of the family (f;).

Proof. The m-a.e. uniqueness of g follows trivially from (i), so we pass to existence.
Replacing if necessary the f;’s with ¢ o f;, where ¢ : RU {400} — [0, 1] is monotone and
injective, we can assume that the given functions are bounded. Similarly, replacing m with a
Borel probability measure with the same negligible sets we can assume that m is a probability
measure.
Now let
A= {fil\/...\/fl-n :neN, i EIijl,...,n}
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put S :=supz., / f dm and notice that since the f;’s are uniformly bounded and m(X) < co
we have S < co. Let (f,) C A be such that S = sup,, [ f,dm, put g := sup,, f, so that by
construction we have S = [ gdm and by definition there must exist a countable family (f; ),
in € I, such that g = sup,cy fi,,-

We claim that g satisfies (i), (7). Indeed, suppose (i) does not hold, i.e. for some i € I it
hold f; > g on a set of positive m-measure. Then S = [gdm < [ gV fidm =lim, o [ fi; V
...V fi. V f; dm, contradicting the definition of S. For (i7) simply notice that if h > f; m-a.e.
for every n, then it holds h > g m-a.e.. g

We now define the concept of dual .#* of an L?*-normed L™®-module .#. As a set we
define
M*={L: .M — L*(X) : linear, continuous and s.t. L(fv) = fL(v) Vv € 4, f € L™(X)}

and we endow it with the operator norm, i.e. ||L|[x := supyj, <1 [[L(v)[[z1(x)- The product of
feL>®X)and L € .#* is defined as

(fL)(v) :== fL(v) Yv € A,

and the pointwise norm as

|L|s == ess sup L(v)
ve, [v|<1l m—a.e.

Proposition 16.3 The space .#* with the operations just defined is a L>-normed L -module
and moreover it holds

|L|. = ess sup |L(v)], VL € A, (16.2a)

veM, |v|<1 m—a.e.
L) < |o||Lls ™ —ae. Voe., Le.a". (16.2b)

Proof. The fact that (.Z*,|| - ||«) is a Banach space is obvious. The fact that fL € .#™* for
f e L>®(X) and L € .#* follows from the commutativity of L>°(X): indeed, the fact that fL

is linear and continuous are obvious and moreover we have

(fL)(gv) = fL(gv) = fgL(v) = gfL(v) = g(fL)(v).

The required properties of the multiplication by a L°°-functions are easily derived, as for any
v € A4 we have

(f(gL))(v) = f((9L)(v)) = f(9L(v)) = fgL(v) = (fgL)(v)

and (1L)(v) = L(iv) = L(v). We come to the pointwise norm. To check that |L|, > 0 pick
v = 0 in the definition. Inequality < in is obvious, for the converse let v € .# be with
[v] <1 m-a.e. and put ¥ := X{1,(,)>0}V — X{L(v)<0}V, 50 that |0 = |v] and L(?) = |L(v)|. Then
it holds |L|, > L(%) = |L(v)|, thus getting (16.2a]).
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We pass to (16.2b)) and observe that X(,—gyL(v) = L(X{y—03v) = 0, so that (16.2b) holds
m-a.e. on {v = 0}. Hence it sufficient to prove that for any ¢ > 0 the same inequality

holds m-a.e. on {|v| € [c,c]}. To see this, notice that on {|v| € [c,c™!]} the functions
lv], [v|~! are both in L*°(X), hence we can write X{jo|e[e.e- 1}V = X{‘U‘E[C7C—1}}|v|ﬁ and since
|X{|v|e[c,c—1]}ﬁ| <1 m-a.e. we obtain

v (%
X{Jolefec13 1 L(0)] = X{|v|€[c,cl]}’L(’v’M)’ = X{v|€[c,cl}}v”L(M)‘ < X{polefec 3ol L]
We now observe that for every f € L>(X) and L € .#* we have

|f L]+ = esssup | fL(v)| = esssup [ f||L(v)| = | f|esssup |L(v)| = [ f]| L],

where all the essential supremum are taken among all v € .# with |v| < 1 m-a.e.. Hence to

L =/ [ 1Ezdm, (16.3)
The inequality
[1Leam < [ o). an < \/ / |v\2dm\/ [ 1Lz dm = oy [ 122 dm

valid for any v € 4, L € .#* shows that < holds in ([16.3)). For the converse inequality recall
that the properties of the essential supremum ensure that there are (v,) C .# with |v,| <1

conclude we need to prove that

m-a.e. for every n € N such that |L|, = sup,, L(v,,). Define recursively (0,,) C .# by putting
Vo := vg and
Unt1 = X{L(wn41)>L(50)}Vnt1 T X{L(wn41)<L(50)} On-

Notice that the sequence L(%,) = sup;<,, L(v;), so that L(?,) increases monotonically to |L|.
and that [9,| < 1 m-a.e. for every n. Also, for every f € L>® N L*(X) we have | fo,| =
1fOnlllz2 < |Ifllz2 and thus we have

[ ey dm = [ (o) dm < LISl < 21 e

so that letting n — oo and using the monotone convergence theorem to pass to the limit in
the left hand side, we obtain

/ FIL). dm < L] £ 2

so that the arbitrariness of f € L> N L?(X) gives (16.3). O

Proposition 16.4 Let L : .# — L*(X) be linear, continuous and such that
L(Xgv) = XgL(v)

for everyv € # and E C X Borel. Then L € #*.
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Proof. We need to prove that

L(fv) = fL(v). (16.4)
By assumption and taking into account the linearity of L we see that (16.4]) is true for f
simple. The claim then follows by the continuity of both sides of (16.4) in f € L. O

Exercise 16.5 Assume that m has no atoms and let L : 4 — L*>(X) be linear, continuous
and such that L(fv) = fL(v) for every v € A4 and f € L>(X). Prove that L = 0.

We now study the relation between the dual module and the dual in the sense of Banach
spaces. Thus let .#’ be the dual of .# seen as Banach space. Integration provides a natural
map Int : #* — A’ sending L € .#* to the operator Int(L) € .#’ defined as

Int(L)(v) := /L(v) dm, Yve H.

Proposition 16.6 The map Int is a bijective isometry, i.e. |L||« = ||Int(L)||: for every
Le.nr.

Proof. From the inequality

e 2)0)| = | [ L) dm| < L@ < o012

we see that ||Int(L)|, < ||L||«. For the converse inequality let L € .Z*, fix ¢ > 0 and find
v € A such that [|[L(v)| 1 > [[v[[(| L]« —€). Put ¥ := X{1)>0}V — X{L(v)<0}V, Notice that
|o| = |v|] and L(0) = |L(v)| m-a.e. and conclude by

Mt (L) [[o]] = [Int(L)(2)] = ‘/L(f}) dm‘ = [IL@)l[Lr = [loll(1 Ll = &) = ol (ILl« - &)

and the arbitrariness of ¢ > 0. It remains to prove that Int is surjective, hence fix ¢ € .#’
and for v € .# consider the map sending a Borel set £ C X to u,(E) := £(Xgv) € R. Clearly
iy is additive and given a disjoint sequence (E;) of Borel sets we have

|10(Un Bn) = p0(Una En)| = [10(Uns N Bn)| = (XU, wEB,0)| < I IXG,- w0

and since || Xy, 5,0 |v|?dm — 0 by the dominated convergence theorem, we

= fun>NEn
see that pu, is a Borel measure. By construction, it is also absolutely continuous w.r.t. m and
thus it has a Radon-Nikodym derivative: call it L(v) € L}(X).

By construction we have that v — L(v) is linear. Also, since for every E, F C X Borel the
identities py ., (F) = {(XpXEv) = {(XEnFv) = po(ENF) grant that [ L(Xpv) = [op L(v),
we see that
L(xgv) = XgL(v) Vv e #, E C X Borel. (16.5)
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Now let us prove that v — L(v) € L'(X) is continuous. For v € .# we put 0 := X{7,(,)>0}V —
X{L(v)<0}v S0 that [0 = |v] and, by (16.5)) and the linearity of L, we have |L(v)| = L(?) m-a.e..
Then

L)L = /L(ﬁ) dm = p5(X) = £(0) < |||l ]|o] = 1]} [[v]],

which was claim. The fact that L € .#* now follows from (16.5) and Proposition[16.4 O

17 Lesson [10/01/2018]
Let .# be an L?(m)-normed module. Then the map
Ly:dl s M, M0 (Iﬂ(u) M5 L L) € Ll(m)) c .M (17.1)

is an isometric embedding. Indeed, its L (m)-linearity can be easily proved, while to prove
that it preserves the pointwise norm observe that

|1y (v)| = esssup |L4(v)(L)| = esssup|L(v)| < || m-a.e. for every v € 4
IL].<1 L. <1

and that for any v € .# there exists L € .#* such that L(v) = |v|> = |L|? holds m-a.e.,
namely choose ¢ € .#’ such that £(v) = ||v||i// = HEHE/[, and set L := Int;/}(f). Therefore one
has that |I///(v)| = |v| holds m-a.e. for every v € .#, whence [ , is an isometric embedding.

Definition 17.1 The L*(m)-normed module # is said to be reflexive as module provided

the embedding I 4 is surjective.

Proposition 17.2 The L?(m)-normed module .4 is reflexive as module if and only if it is

reflexive as Banach space.

Proof. The map Int 4 : .#* — .#' induces an isomorphism Int, : .#Z" — (.#*). Let us
denote by J : .# < .#" the canonical embedding. We have that

Int s+ (Ly(v))(L) = /I(v)(L) dm = /L(v) dm,
Int®, (J(0)) (L) = J(0) (Int (L)) = Int 4(L)(v) = / L(v) dm
for every v € A4 and L € .#*, whence we deduce that the diagram

M < La MF

1| |t

%// (%*)/

tr
Int?,

commutes. Since I 4, J are injective and Intf}/, Int_y+ are bijective, we thus conclude that I 4
is surjective if and only if J is surjective. O
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Proposition 17.3 Let V be a generating linear subspace of # . Suppose that L : V — L'(m)
is a linear map such that for some g € L?(m) it holds

’L(v)’ <glv| m-a.e. foreveryveV. (17.2)

Then there exists a unique L € .#4* such that E|V = L Moreover, the inequality |L|. < g
holds m-a.e. in X.

Proof. We claim that for any v,w € V and E C X Borel we have that
v=w m-a.e.on £ = L(v)=L(w) m-a.e. on E. (17.3)

Indeed, note that yields |L(v) — L(w)| < |L(v — w)| < g|v — w| = 0 m-a.e. on E. Now
call V the set of all elements Yoy XE,vi, with (E;)!_; Borel partition of X and v1,...,v, € V.
The vector space V is dense in .# by hypothesis. We are forced to define L:V— L'(m) as
follows: L() := 3.7, X, L(v;) for every & = 27 Xg,v; € V, which is well-posed by

and linear by construction. Given that for every v = >""" | Xp,v; € V we have

n n
IL@)| =Y X |Lw)] < 9> Xglvil =gt m-ae., (17.4)
i=1 i=1
we deduce that HE@)HLI(“‘) < gl 2wy 1]l for every v € V. In particular L is continuous,

whence it can be uniquely extended to a linear and continuous map L: . — L'(m). Tt is
easy to see that Lis L*°(m)-linear, so that L € .#*. To conclude, the fact that the m-a.e.
inequality ‘E(v)} < g|v| holds for every v € .4 follows from via an approximation
argument. Hence |L|, < g holds m-a.e., as required. O

Definition 17.4 (Tangent module) We define the tangent module L?(TX) as the module
dual of L*(T*X). Its elements are called vector fields.

We can introduce the notion of vector field in an alternative way, which is not based upon

the theory of normed modules. Namely, we can define a suitable notion of derivation:

Definition 17.5 (L?-derivations) A linear map L : S?>(X) — L'(m) is an L?-derivation
provided there exists £ € L?(m) such that

|L(f)| < €|Df| m-a.e. for every f € S*(X). (17.5)
The relation between vector fields and derivations is described in the following result:

Proposition 17.6 Given any X € L*(TX), the map S*(X) > f + df(X) is a derivation.
Conversely, for any derivation L : S*(X) — L'(m) there exists a unique X € L*(TX)
such that L(f) = df(X).
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Proof. Given any X € L*(TX), let us define L := X od. Since |L(f)| = |df(X)| < |Df||X]|
holds m-a.e., we have that L is the required derivation.

On the other hand, fix a derivation L and set V := {df : fe SQ(X)}. By arguing as in
the proof of Proposition one can see that for any fi, fo € S?(X) we have

dfi =dfs mae.on X = L(f1)=L(f2) m-ae. onX. (17.6)

Then the map T : V — L'(m), given by T(df) := L(f), is well-defined. Moreover, one has
that |T(df)| < £|Df| for each f € S*(X), whence Proposition grants the existence of a
unique vector field X € L?(TX) such that w(X) = T(w) for all w € V. In other words, we
have df(X) = L(f) for every f € S?(X), getting the thesis. O

Corollary 17.7 Let L: S*(X) — L*(m) be a derivation. Then

L(fg) = f L(g9) + g L(f)  for every f,g € S*(X) N L= (m). (17.7)
Proof. Direct consequence of Proposition and of the Leibniz rule for the differential (see
item C) of Theorem [14.1). O

The adjoint d* : L*(TX) — L?(m) of the unbounded operator d : L?(m) — L%(T*X) is
(up to a sign) what we call ‘divergence operator’. More explicitly:

Definition 17.8 (Divergence) We call D(div) the space of all vector fields X € L*(TX)
for which there exists h € L?(m) satisfying

—/fhdm: /df(X) dm  for every f € W12(X). (17.8)

The function h, which is unique by density of W12(X) in L?(m), will be unambiguosly denoted
by div(X). Moreover, D(div) is a vector subspace of L*(TX) and div : D(div) — L?(m) is a

linear operator.
We show some properties of the divergence operator:

Proposition 17.9 Let X,Y € L*(TX) be given. Suppose that X =Y holds m-a.e. on some
open set Q C X. Then div(X) = div(Y) is satisfied m-a.e. on Q.

Proof. By linearity of the divergence, it clearly suffices to prove that div(X) = 0 m-a.e. on
whenever X = (0 m-a.e. on €). In order to prove it, notice that a simple cut-off argument gives

A={feW"X) : f=00nQ} isdense in B:= {g€ L*(m) : g=0o0n Q°}. (17.9)

Moreover, — [ fdiv(X)dm = [df(X)dm = 0 holds for every f € A, whence property (17.9)
ensures that [ ¢gdiv(X)dm =0 for all g € B, i.e. div(X) vanishes m-a.e. on €. O
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Proposition 17.10 Let X € D(div) be given. Let f : X — R be any bounded Lipschitz
function. Then fX € D(div) and

div(fX)=df(X)+ fdiv(X) holds m-a.e. in X. (17.10)

Proof. Observe that the right hand side in (17.10)) belongs to L?(m). Then pick g € W2(X).
By the Leibniz rule for the differential, we have that

- [ glafx) + faiv(0) dm =~ [ 9df () + fgdi(X)dm = [ d(£9)(X) - gdf(X)dm
_ / Fdg(X) dm.
Therefore the thesis is achieved. O

We introduce a special class of vector fields: that of gradients of Sobolev functions.

Definition 17.11 Let f € S*(X). Then we call Grad(f) the set of all X € L*(TX) such that
df(X) =|df]? = |X|*> holds m-a.e. in X. (17.11)

Remark 17.12 As seen above, it holds that Grad(f) # 0 for every f € S*(X). However, it
can happen that Grad(f) is not a singleton. Furthermore, even if each Grad(f) is a singleton,
its unique element does not necessarily depend linearly on f. |

Given any Banach space B, we can define the multi-valued map Dual : B — B’ as
B>y {L eB : L(v) = ||IL]]% = HUHI?B}. (17.12)
The Hahn-Banach theorem grants that Dual(v) # () for every v € B.

Exercise 17.13 Prove that Dual is single-valued and linear if and only if B is a Hilbert space.
In this case, Dual is the Riesz isomorphism.

Coming back to the gradients, we point out that
Intz2(px) (Grad(f)) = Dual(df) for every f € S*(X), (17.13)
where the map Dual is associated to B := L?(T*X).

Example 17.14 Consider the space (R?, |- || ), where H(w,y)Hoo = max {|z|, [y|}. Define
the function f: R? » R as f(z,y) := x. Then Grad(f) = {(z,y) € R* : z =1, |y| < 1}.

Exercise 17.15 Prove that Dual on (R",|| - ||) is single-valued if and only if the norm | - ||

is of class C! (or, equivalently, the dual norm || - ||, is strictly convex).

*

Remark 17.16 The inequality df(X) < 1|df|*+3|X|? holds m-a.e. in X for every f € S?(X)
and X € L?(TX) (by Young inequality). It can be readily proved that the opposite inequality
is satisfied if and only if X € Grad(f). [ ]
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Theorem 17.17 The following hold:

A) LocAarity. Let f,g € S?(X). Suppose that f = g holds m-a.e. on some Borel set E C X.
Then for any X € Grad(f) there exists Y € Grad(g) such that X =Y m-a.e. on E.

B) CHAIN RULE. Let f € S*(X) and X € Grad(f) be given.

B1) If a Borel set N C R is L'-negligible, then X = 0 holds m-a.e. on f~*(N).

B2) If ¢ : R — R is Lipschitz then ¢' o f X € Grad(p o f), where ¢ o f is arbitrarily
defined on f _1{n0n—diﬂ'erentiability points of <p}.

Proof. To prove A), choose any Y € Grad(g) and define Y := Xg X+Xge Y. Then Y € Grad(g)
and X =Y m-a.e. on F, as required.

Property B1) directly follows from the analogous one for differentials (see Theorem ,
while to show B2) notice that

dpo f)' o fX)=¢ o fd(po f)X) =|¢ o FPAF(X) =g o f2df> = |¢ o fI?|X]?
= |d(po )

is verified m-a.e. on X. O

18 Lesson [15/01/2018]

In the previous lesson we used the following result, which we now fully justify:

Proposition 18.1 Let f € WH2(X) and g € LIP(X) N L>(m) be given. Then fg € W2(X)
and d(fg) = fdg+ gdf.

Proof. Fix € X and for any m € N pick a 1-Lipschitz function X,, : X — [0, 1] with bounded
support such that X,, = 1 on B, (Z). Then define f,, := (f An)V (—n) and gn, := X g for
every n,m € N. Hence f,, g, € WH3(X) N L®(m) and d(fn gm) = frdgm + gm dfn. Given
that [d(fn gm)| < (HgHLoo(m)+Lip(g))\f|+ 191l oo (my 1 df| € L?(m) holds m-a.e. for every choice
of n,m € N and f, g, — fg pointwise m-a.e. as n,m — oo, we deduce that fg € S?(X) by
the closure of the differential. Now observe that for any n € N we have

XB,,(z) A(fn 9) = XB,,(z) A(fn gm) = XB,.(2) (fn dg + gdfn) for every m € N,

whence d(f, g) = fndg + gdf, is satisfied for every n € N. Given that f, g — fg in L?(m)
and f,dg + gdf, — fdg+ gdf in L?(T*X), we conclude that d(fg) = fdg + gdf by the
closure of d. 0

Given any two Sobolev functions f, g € S?(X), let us define

1
Hyg4(e) := i‘D(g + sf)}z € L'(m) for every € € R. (18.1)
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Then the map Hy,: R — L'(m) can be easily proven to be conver, meaning that
H((l—)\)€0+)\€1) < (1-XN)H(eg)+AH(e1) m-a.e. for all eg,e1 € R and A € [0,1]. (18.2)
Therefore the monotonicity of the incremental ratios of Hy , grants that

Hyg(e) — H Hyg(e)— H
3 Ll(m)_ h\l"l’(l) f,g(&) f,g(o) — ess 101’1f f}g(&‘) f7g(0)
€ 9 e> £

(18.3)

and an analogous statement holds for ¢ 7 0.

Remark 18.2 The object in ((18.3) could be morally denoted by df(Vg), for the reasons we
are now going to explain. Given a Banach space B, we have that the map Dual defined in
([17.12) is (formally) the differential of || - ||3/2. Since T,B ~ B and T”U”%/Q]R ~ R for any

vector v € B, we can actually view d(]| - HfB/Q) (v) : T,B — T2 /2R as an element of B'. In
our case, if we let B = L?(T*X) then we have that

Lo g +ed I3 — idgll _ (113
e—0 2e 2

) (9)a) = Dusl(dg)a) = df (V)
which leads to our interpretation. |

Proposition 18.3 Let f,g € S?>(X). Then the following hold:

i) for any X € Grad(g) we have that ess inf5>0M > df(X) holds m-a.e. in X,

£

Hpa@-Hpa©) _ gy

£

ii) there exists Xy € Grad(g) such that ess inf.~g (X¢4) m-a.e. in X,

i) for any X € Grad(g) we have that ess sup6<0M < df(X) holds m-a.e. in X,

£

Hy,g(e)—Hy,4(0) — df(

£

ii") there exists Xy _ € Grad(g) such that ess sup,
Proof. 1), 1) Take X € Grad(g). By Remark [17.16| we have that

Xy ) m-a.e. in X.

1 1
dg(X) > 3 dg|? + 5 |X|>  holds m-a.e. in X. (18.4)
Moreover, an application of Young’s inequality yields
1 1
d(g+e f)(X) < 5 [d(g+ PP+ 5 IXP meae inX. (18.5)

By subtracting (|18.4)) from ([18.5)) we thus obtain

2
|d(g +< f)]” — ldg?
2
Dividing both sides of (18.6)) by € > 0 (resp. € < 0) and letting € — 0, we get i) (resp. i')).
ii), ii") We shall only prove ii), since the proof of ii’) is analogous. For any € € (0,1), let us
pick some X, € Grad(g + ¢ f). Notice that

edf(X) < m-a.e. in X. (18.6)

HXEHL?(TX) = Hd(g + €f)HL2(T*X) < Hdg”L2(T*X) + deHL2(T*X) for every € € (0,1),
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whence the intersection among all 0 < ¢ < 1 of the weak*-closure of {X. : e € (0,&)} is
non-empty by Banach-Alaoglu theorem. Then call X one of its elements. By expanding
the formula d(g + ¢ f)(X:) > %}d(g + sf)|2 + 3|Xc|?, which holds m-a.e. for every e € (0,1),
we see that

% X[+ % dg|? — dg(X.) < G. holds m-a.c. in X, (18.7)

for a suitable G. € L'(m) that L!(m)-converges to 0 as € \, 0. Observe that for any £ C X
Borel we have that

1 1
Fp: L*(TX) >R, X+ / 3 |X|? + 3 |dg|* — dg(X) dm (18.8)
E

is a weakly*-lower semicontinuous operator. Hence ([18.7)) grants that Fg(Xf ) < 0 for every
Borel set E C X, or equivalently % | X7 |? + 5 |dg|> — dg(Xs+) < 0 m-a.e. in X. Therefore
Remark [17.16| gives Xy € Grad(g). Finally, observe that it m-a.e. holds

Hy (") — Hy o(0
df(Xe) 2 essinf f9(€ )6, 190 _ g for every e € (0,1). (18.9)
el>

Recall that L?(TX) > X = [w(X)dm is weakly*-continuous for any w € L*(T*X). By
applying this fact with w := Xg df, where E C X is any Borel set, we deduce from ((18.9) that

/ df(Xy¢4)dm > / Odm for every E C X Borel.
E E

This grants that df(Xy ) > © holds m-a.e. in X, which together with i) imply ii). O

Exercise 18.4 Prove that the square of the norm of a finite-dimensional Banach space is

differentiable if and only if its dual norm is strictly convex.

Corollary 18.5 The following are equivalent:
i) for every f,g € S*(X) it holds that

H — Hys 4(0 H — H¢4(0
e>0 € e<0 €

ii) for every g € S%(X) the set Grad(g) is a singleton.

Proof. ii) = i) It trivially follows from items ii) and ii’) of Proposition [18.3]
i) = ii) Our aim is to show that if X,Y € Grad(g) then X =Y. We claim that it is enough
to prove that

df(X)=df(Y) forevery f € S*(X). (18.11)

Indeed, if ([18.11]) holds true then the operator df — df(X —Y') from the generating linear
subspace V := {df : f € S*(X)} of L*(T*X) to L'(m) is identically null, whence accordingly
we have that X —Y = 0 by Proposition m This shows that it suffices to prove (|18.11).
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Take any f € S?(X). Suppose that (18.11) fails, then (possibly interchanging X and Y)
there exists a Borel set £ C X with m(E) > 0 such that df(X) < df(Y) holds m-a.e. in E.
Therefore we have that

H — H:,(0 H — Hy¢ 40
ess sup £9(€) r4(0) <df(X) <df(Y) <ess inf £9(®) £5(0) m-a.e. in F,
e<0 € e>0 €
which contradicts (|18.10]). This shows ([18.11]), as required. ]

Definition 18.6 (Infinitesimal strict convexity) We say that (X,d, m) is infinitesimally
strictly convex provided the two conditions of Corollary hold true. For any g € S*(X),
we shall denote by Vg the only element of Grad(g).

Definition 18.7 (Hilbert module) An L?(m)-normed module S is said to be a Hilbert
module provided (| - || ,,) is a Hilbert space.

Proposition 18.8 Every Hilbert module is reflexive.

Proof. Any Hilbert module is clearly reflexive when viewed as a Banach space, thus also in
the sense of modules by Proposition [17.2 O

Proposition 18.9 Let 5 be a Hilbert module. Then the formula
1
(v, w) = 5(!1} +w|® — |[v|* — |w|?) € L' (m) (18.12)
defines an L (m)-bilinear map (-,-) : H# x # — L'(m), called pointwise scalar product,
which satisfies

(v,w) = (w, v)
[(v,w)| < |v||w] m-a.e.  for every v,w € H. (18.13)
(v,0) = |v]?
Moreover, the pointwise parallelogram rule is satisfied, i.e.

2(Jv)* + [wl?) = v+ w* + |v —w|* m-a.e. for every v,w € H. (18.14)

Proof. We only prove formula . The other properties can be obtained by suitably
adapting the proof of the analogous statements for Hilbert spaces, apart from the L (m)-
bilinearity of (-,-), which can be shown by using the fact that (-,-) is local and continuous
with respect to both entries by its very construction. Then let v, w € 7 be fixed. Since the
norm || - || ,, satisfies the parallelogram rule, we have that for any Borel set £ C X it holds

2/ [0 + w? dm = 2||Xp 0|3 + 2|IXpw| = [Xpv+Xpw]|% + X0 = Xpw|3,
E
:/ v+ w|? + v — w|? dm,
E
which yields (18.14]) by arbitrariness of F. ]
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Given any Hilbert module 57, it holds that

/ (v,w)ydm = (v,w), for every v,w € I, (18.15)

as one can immediately see by recalling that [ |v]|?dm = ]|U||if

Remark 18.10 Actually the pointwise parallelogram rule characterises the Hilbert modules:
any L?(m)-normed module is a Hilbert module if and only if (18.14]) is satisfied. [

Theorem 18.11 (Riesz) Let . be a Hilbert module. Then for every L € 7% there exists

a unique element v € J€ such that
L(w) = (v,w)  for every w € F. (18.16)

Moreover, the equality |v| = |L|« holds m-a.e. in X.

Proof. Consider Int(L) € #'. By the classical Riesz theorem, there exists (a unique) v € .7
such that (v,w) ,, = Int(L)(w) for every w € . Hence for any w € ¢ we have that

/ (v,w)ydm = (v, Xpw) , = Int(L)(Xgw) = / L(w)dm for every E C X Borel,
E E

so that (18.16) is satisfied. Finally, it is easy to show that [v] = esssupy,<;(v,w). Recall
that also |L[. = esssupy,|<; L(w), therefore the m-a.e. equality [v] = |Ll[, follows. O

It immediately follows from Theorem [18.11] that the map % > v — (v, ) € J* is an

isometric isomorphism of modules.

Example 18.12 We compare the Riesz theorem for Hilbert spaces and Theorem in
the special case in which % = L?(m).
The former grants that for any linear and continuous map ¢ : L?(m) — R there exists a
unique g in L?*(m) such that ¢(f) = [ fgdm for every f € L?(m), thus 1911 £2(my = 1121l 22 (-
The latter grants that for any L°°(m)-linear and continuous map L : L%*(m) — L!(m)
there exists a unique ¢ in L?(m) such that L(f) = fg holds m-a.e. for every f € L?(m), thus
accordingly |g| = |L|« holds m-a.e. in X.

19 Lesson [17/01/2018]
Theorem 19.1 The following are equivalent:
i) Wh2(X) is a Hilbert space,
ii) 2(|df[* + [dgl*) = |d(f —|—g)‘2 + |d(f - g)‘2 holds m-a.e. for every f,g € WH2(X),
iii) (X,d, m) is infinitesimally strictly convex and df(Vg) = dg(Vf) holds m-a.e. in X for

every f,g € W(X),
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iv) L2(T*X) and L*(TX) are Hilbert modules,

v) (X,d, m) is infinitesimally strictly convexr and V(f + g) = Vf + Vg holds m-a.e. in X
for every f,g € W13(X),

vi) (X,d,m) is infinitesimally strictly convex and V(fg) = fVg+ gV f holds m-a.e. in X
for every f,g € WH2(X) N L (m).
Proof. i) == ii) First of all, observe that W2(X) is a Hilbert space if and only if

1
Wh2(X) 5 f — E(f) := 5 / |df|>dm satisfies the parallelogram rule. (19.1)

Now suppose that i) holds, then E(f+¢ g)+E(f—cg) = 2E(f)+2e2E(g) for all f, g € WH2(X)
and ¢ # 0, or equivalently

E(f+c9)—E(f) E(F—c9)—E() _y g, (19.2)

Hence (19.2) and Proposition grant that

/ esssup dg(X)dm = lim E(f +e9) - E(f) — lim E(f+eg) —E(f)
X cGrad(f) N0 € e 0 €

- inf dg(X)dm,
[ essint dg(x)am

thus accordingly essinf xcgrad(y)dg(X) = essSUp xegrad()dg(X) holds m-a.e. in X. This guar-
antees that Grad(f) is a singleton for every f € W12(X), i.e. (X,d, m) is infinitesimally strictly
convex. We now claim that

/df(vg) dm = /dg(Vf) dm for every f,g € WH*(X). (19.3)
Given f,g € WH2(X), denote by Q : R? — R the function (,s) — E(t f + sg). Since Q is a
quadratic polynomial, in particular smooth, we have %|t:0%‘s:OQ(t’ s) = %‘520%|t:0Q(t’ s).

The left-hand side of the previous equation can be rewritten as

% y (}% E(tf+ h}? - E(tf>> _ % » (/dg(v(m) dm)
= % . (t/dg(Vf) dm) = /dg(Vf) dm

and analogously the right-hand side equals [ df(Vg)dm, proving ([19.3).
Fix any function h € LIP(X) N L*(m). We want to prove that

Wh2(X)NL®(m) > f — /h |df|*dm satisfies the parallelogram rule. (19.4)

To this aim, notice that the Leibniz rule and the chain rule for differentials yield
[ riasPan= [naspan = [ A - Fan(vs) dm
= [t~ an(vir/2)am E [anes) - (/2 wn n,
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Both the addenda [ d(fh)(Vf)dm and — [d(f?/2)(Vh)dm are quadratic forms, the former
because (f,g) — [d(fh)(Vg)dm = [dg(V(fh))dm is bilinear, whence (19.4). Given that
the set LIP(X) N L*°(m) is weakly™ dense in L*(m), we finally deduce from ([19.4) that

2/h;df|2+h|dg\2dm:/h|d(f+g)}2+h{d(f—g)\Qdm

holds for every f,g € WH2(X) and h € L°(m). Therefore ii) follows.

ii) = i) By integrating the pointwise parallelogram rule over X, we get the parallelogram
rule for || - [[yy1.2(x), so that Wh2(X) is a Hilbert space.

i) = iii) By arguing exactly as in the first implication, we see that (X, d, m) is infinitesimally
strictly convex and that holds true. By following the argument we used to prove ,
we deduce that

for every f,g € WH2(X) N L>®(m)

and h € LIP(X) N L*(m). (19.5)

/hdf(Vg) dm = /hdg(Vf) dm
Given that the set LIP(X) N L>(m) is weakly* dense in L>°(m), we conclude from (19.5)) (by
applying a truncation and localisation argument) that df(Vg) = dg(Vf) holds m-a.e. for
every f,g € WH2(X). This shows that iii) is verified.
iii) == i) It suffices to prove that E satisfies the parallelogram rule. Fix f,g € W12(X). Note
that the function [0,1] > ¢t — E(f 4 t g) is Lipschitz and that its derivative is given by

CE(f +1g) = lim E((f+tg)+hhg) —EJ +49) :/dg(v(f+tg)) dm

dt
— [dtr +t9)(Tgyam = [ af(Tgyam +-¢ [ lagl*am,

whence by integrating on [0,1] we get E(f + g) — E(f) = [df(Vg)dm + [|dg|?/2dm. If
we replace g with —g, we also obtain that E(f — g) — E(f) = — [ df(Vg)dm + [ |dg|>/2dm,
whence by summing these two equalities we conclude that E(f+g¢)+E(f—g) = 2E(f)+2E(g).
ii) = iv) Consider two 1-forms w and 7 in L*(T*X), say w = Y, Xg,df; and n = > XF;dg;.
By locality we see that |w + 1|2 + |w — 7|?> = 2|w|?> + 2|n|? holds m-a.e. in X, whence by
integrating we get ||w + UHiQ(T*X) +|lw — 77"%2(T*X) =2 ||wH%2(T*X) +2 ||77||%2(T*X)- By density
of the simple 1-forms in L?(T*X), we conclude that L?(T*X) (and accordingly also L?(TX))
is a Hilbert module, thus proving iv).

iv) = ii) It trivially follows from Proposition [18.9]

iv) = v) Let f € WH2(X) and X € Grad(f). By Theorem applied to L?(TX)
there exists a unique 1-form w € L?(T*X) such that (w,n) = n(X) for every n € L?(T*X).
Moreover, it holds that |w|, = |X| = |df|, m-a.e. in X. Hence by taking n := df we see that

w —dffZ = [wlZ +|df]} - 2(w,df) = 2|df[} - df(X) =0 m-ae,

which grants that w = df. Again by Theorem [18.11] we deduce that (X, d, m) is infinitesimally
strictly convex and that f +— V f is linear, as required.
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v) = ii) For any f,g € W!?(X), it m-a.e. holds that

d(f +9)> = d(f + 9)(V(f +9)) = df (V) + df(Vg) + dg(V ) + dg(Vg),
[d(f — 9)" = d(f — 9)(V(f — 9)) = df (V) — df(Vg) — dg(V ) + dg(Vg),

hence by summing them we get the m-a.e. equality ‘d(f—i—g){Q + |d(f—g)‘2 =2|df|?+2]|dg|?
proving the validity of ii).

v) <= vi) By applying the chain rule for gradients, we see that if f,g € WH2(X) N L>(m)
and f':=exp(f), ¢ := exp(g), then we have

FadvV(f+g9) =rfgV(log(fg))=V(f9g),
f'9(Vf+Vg) = fg V(log(f)) + f'g V(loglg)) =g Vf + f' V.

Therefore we conclude that v) is equivalent to vi), thus concluding the proof. ]

Definition 19.2 (Infinitesimal Hilbertianity) We say that (X,d,m) is infinitesimally
Hilbertian provided the sixz conditions of Theorem hold true.

Lemma 19.3 Let .# be an L?(m)-normed module. Let S C . be a separable subset with the
following property: the L°°(m)-linear combinations of elements of S are dense in .# . Then

the space M is separable.

Proof. Pick a countable dense subset (vy), of S. It is then clear that the L°°(m)-linear
combinations of the v,’s are dense in .Z. It only remains to show that the family of such
combinations is separable. Now fix a Borel probability measure m’ on X with m < m/ < m.
Then there exists a countable family A of Borel subsets of X such that for any £ C X Borel
there is a sequence (F;); C A with m'(E;AF) — 0. For instance, define A as the set of all
open balls with rational radii that are centered at some fixed countable dense subset of X.
Hence let us define the separable set D as

{Z o XE, Un

n=0

NeN, (a)ilyCQ, (B )i\’:ogﬂ},

It can be readily proved that the set of all L>°(m)-linear combinations of the v,,’s is contained
in the closure of D. Therefore the thesis is achieved. O

Proposition 19.4 Let (X,d, m) be an infinitesimally Hilbertian metric measure space. Then
the spaces WH2(X), L*(T*X) and L*(TX) are separable.

Proof. The space W12(X), being reflexive by hypothesis, is separable by Theorem Given
that the differentials of the functions in W12(X) generate the cotangent module, we deduce
from Lemma[19.3|that even L?(T*X) is separable. Finally, Theorem [18.11]grants that L?(TX)
is separable as well. O
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We now introduce the notion of ‘pullback module’. In order to explain the ideas underlying
its construction, we first show how things work in the classical case of smooth manifolds.

Let ¢ : M — N be a smooth map between two smooth manifolds M and N. Given a
point z € M and a tangent vector v € T, M, we have that dp,(v) € T )N is the unique
element for which dy,(v)(f) = d(f o ¢).(v) holds for any smooth function f on N. However,
in our framework vector fields are not pointwise defined, so we are rather interested in giving a
meaning to the object dp(X), where X is a vector field on M. Unless ¢ is a diffeomorphism,
we cannot hope to define dp(X) as a vector field on N. What we need is the notion of
‘pullback bundle’: informally speaking, given a bundle E over N, we define p*FE as that
bundle over M such that the fiber at a point x € M is exactly the fiber of E at ¢(z). Hence
the object dyp(X) can be defined as the section of ¢*T'N satisfying dp(X)(z) = d, (X (z))
for every x € M.

Definition 19.5 (Maps of bounded compression) Let (X,dx,mx) and (Y,dy,my) be
metric measure spaces. Then a map ¢ : Y — X is said to be of bounded compression
provided it is Borel and there exists a constant C' > 0 such that p,my < Cmx. The least such
constant C > 0 will be denoted by Comp(yp) and called compression constant of ¢.

20 Lesson [22/01/2018]

We introduce the notion of ‘pullback module’. The proof of the following result is only
sketched, as it similar in spirit to that of Theorem [13.2]

Theorem 20.1 (Pullback module) Let (X,dx,mx) and (Y,dy,my) be metric measure
spaces. Let 4 be an L?(mx)-normed module. Let p : Y — X be a map of bounded com-
pression. Then there exists a unique couple (¢* M ,¢*), where *. A is an L*(my)-normed

module and ©* : M — ©* M is a linear continuous operator, such that
i) |¢*v| = |v| o ¢ holds my-a.e. for every v € M,
ii) the set {p*v : v € M} generates p*. M as a module.

Uniqueness is up to unique isomorphism: given another couple (g;"\///l, g;;) with the same

properties, there is a unique module isomorphism ® : ©* .M — go/’*\% such that ® o p* = &

Proof. UNIQUENESS. We define the space V C ¢*.# of simple elements as

n
' {Z XA, 9" i
i=1

We are obliged to define @(Zz XA, go*vi) = Xa, ﬂl for any >, Xa, ¢*v; € V. Since

D Xa,ervil =D Xa et =D X luilop = Xa, [p*uil = ) Xa, ¢

(A;); Borel partition of Y, (v;); C ///} .

m.a.e.,
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we see that such ® is well-defined. Moreover, it is also linear and continuous, whence it can
be uniquely extended to a map ¢ : ¢*.# — <p/"_‘;\//// . It can be readily proven that ® is a
module isomorphism satisfying ® o p* = ;;, thus showing uniqueness.

EXISTENCE. We define the ‘pre-pullback module’ Ppb as

Ppb := {(4;,v;); ‘ (A;); Borel partition of Y, (v;); € . }.
We consider the following equivalence relation on Ppb: we declare (A4;,v;); ~ (Bj, w;); pro-
vided |v; —wj| o ¢ = 0 holds my-a.e. on A; N B; for every i, j. We shall denote by [A;, v;]; the
equivalence class of (4;,v;);. Hence we introduce some operations on Ppb/ ~:
[Ai, 'Ui]i + [Bj wj]j = [Az N Bj, v; + wj]m-,
A A il o= [Ag, Avils,

<Zaj X3j> - [Ag,vi]i = [Ai 0 By, o vl g,
J

(A, vili| ==Y Xa, [vil o9 € L*(my),

1As, il = </ HAi,mwde)l/Q.

One can prove that (Ppb / ~ - H) is a normed space, then we define p*.# as its completion
and we call ¢* . # — ©*.# the map sending any v € .# to [Y,v]. It can be seen that the
above operations can be uniquely extended to ¢*.#, thus endowing it with the structure of
an L?(my)-normed module, and that (¢*.#, p*) satisfies the required properties. O

Example 20.2 Consider .# := L?(mx). Then p*.# = L?(my) and ¢*f = f o ¢ holds for
every f € L?(mx).

Example 20.3 Suppose that we have Y = X x Z, for some metric measure space (Z, dz, mz)
such that myz(Z) < +oo. Let us define dy((iL'l,Zl), (.1‘2,22))2 = dx(z1, 22)% + dz(21, 22)? for
every pair (x1,21), (z2, 22) € X x Z and my := mx ® myz. Denote by ¢ : Y — X the canonical
projection, which has bounded compression as p,my = myz(Z) mx.

Now fix an L?(mx)-normed module .# and consider the space L?(Z,.#), which can be
naturally endowed with the structure of an L?(my)-normed module. For any f € L>(my)
and V. € L*(Z, #), we have that f-V. € L*(Z,.#) is defined as z +— f(-,2)V, € .#. Given
any element V. of L*(Z,.#), say z + V., we have that the pointwise norm |V| is (my-a.e.)
given by the function (z,2) — |V;|(z). Moreover, consider the operator - : .# — L*(Z,.#)
sending any v € . to the function v : Z — .4 that is identically equal to v. We claim that

(0"t ;") ~ (L(Z, M), 7). (20.1)
To prove property i) of Theorem observe that
[0](z,2) = [Va|(z) = Jv[(z) = (Jv| 0 ¢)(z,2)  for my-a.e. (z,2),

while ii) follows from density of the simple functions in L?(Z, .#).
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Remark 20.4 Suppose that mx is a Dirac delta. Hence any Banach space B can be viewed
as an L?(my)-normed module (since L>(mx) ~ R). Then it holds that

(¢*B,¢") ~ (L*(Z,B), 7) (20.2)
as a consequence of the previous example. |

Example 20.5 Fix an L?(mx)-normed module .#. Suppose that the space Y is a subset
of X with mx(Y) > 0. Call ¢ : Y — X the inclusion map, which has bounded compression
provided Y is equipped with the measure my := Mx |y - The L?(my)-normed module .# ly is
defined as //l’Y = M | ~, where v ~ w if and only if |v — w| = 0 holds mx-a.e. on Y. Then

("M ") ~ (Mg, ), (20.3)
where w: A — M ly is the canonical projection.

Proposition 20.6 Let (X,dx, mx), (Y,dy,my) be metric measure spaces. Let ¢ : Y — X
be a map of bounded compression and .4 an L*(mx)-normed module. Consider a generating
linear subspace V of A . Let A be an L?(my)-normed module and T : V — A a linear map
satisfying the inequality

|T(v)| < Clv|og wmy-a.e.  for everyv €V, (20.4)
for some constant C' > 0. Then there is a unique linear continuous extension T: M- N
of T such that ‘T(v)‘ < C'|v| o ¢ holds my-a.e. for every v € M .

Proof. First of all, we claim that any extension T as in the thesis must satisfy

A~

T(Xav) =Xa0¢@T(v) foreveryveV and A C X Borel. (20.5)
To prove the claim, observe that
T(XAv) +T(Xaev) =T(v) = Xa 09T (v) + Xae 0 0T (). (20.6)

Moreover, we have that X 0 ‘T(XAC V)| S CXa0p|Xacv]op=0,ie Xa0 ©T(Xaev) = 0.
Similarly, one has that X c o T(X Av) = 0. Hence by multiplying both sides of (20.6) by the
function X4 o ¢ we get X4 o ¢T(XA v) = X4 0 ¢ T(v) and accordingly

T(Xav) =Xa0pT(Xav) +Xaco T (Xav) =Xa0pT(Xav) =Xa09T(v),

thus proving the validity of .

In light of (20.5), we necessarily have to define T( S Xa, vi) =D Xa, 0 T (v;) for any
finite Borel partition (A4;); of X and for any (v;); € V. Well-posedness of such definition
stems from the my-a.e. inequality

ZXAi opT(v)| = ZXSO_l(Ai) ’T(vz)‘ < CZ (XAi |vl\) op=0C ’ ZXAi v;

°®,

which also grants (linearity and) continuity of T. Therefore the operator T admits a unique
extension T': .4 — N with the required properties. O
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Remark 20.7 The operator T in Proposition also satisfies
T(fv)=foeT(v) forevery f e L®(mx) and v € .. (20.7)
Such property can be easily obtained by means of an approximation argument. |

The ideas contained in the proof of Proposition can be adapted to show the following
result, whose proof will be omitted.

Proposition 20.8 Let (X,d, m) be a metric measure space. Let .My, M be L*(m)-normed
modules and T : M1 — Mo a linear map such that

|T(v)| < Clv| m-a.e.  for everyv € M, (20.8)
for some constant C > 0. Then T is L*(m)-linear and continuous.

Exercise 20.9 Let T': L?*(m) — L?(m) be an L>°(m)-linear and continuous operator. Prove
that there exists a unique g € L>(m) such that T'(f) = gf for every f € L?(m).

Theorem 20.10 (Universal property) Let (X,dx,mx), (Y,dy,my) be two metric mea-
sure spaces. Let o : Y — X be a map of bounded compression. Consider an L?(mx)-normed
module .4 , an L?(my)-normed module A and a linear map T : # — A . Suppose that
there exists a constant C' > 0 such that

IT(v)| <Clv|oyp my-ae  foreveryve 4. (20.9)

Then there exists a unique L>(my)-linear continuous operator T oM — N, called lifting
of T, such that ‘T(w)‘ < C'|w| holds my-a.e. for any w € p*.# and such that

///Hg@

\ l (20.10)

s a commutative diagram.

Proof. Call V :={¢*v : v € .4}, then V is a generating linear subspace of p*.#. We define
the map S: V. — A as S(¢*v) :=T'(v) for every v € .#. The my-a.e. inequality

T(v)] < Clvlop=Clo™l

grants that S is well-defined. Hence Proposition [20.6] guarantees that S admits a unique
extension 7 : p* M — A with the required properties. O
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21 Lesson [24/01/2018]

Theorem 21.1 (Functoriality) Let (X,dx,mx), (Y,dy,my) and (Z,dz,mz) be metric
measure spaces. Let ¢ : Y — X and ¢ : Z — Y be maps of bounded compression. Fix
an L?(mx)-normed module .# . Then the map @ o) has bounded compression and

(W ("), 0" 0 0*) ~ ((po )" M, (poth)"). (21.1)

Proof. 1t is trivial to check that ¢ o1 has bounded compression. It only remains to show that

‘¢*(¢*U)’ =|v|opor mg-ae  foreveryve #,
{¢*(90*U) NS ///} generates V" (¢*.#) as a module.

To prove the former, just notice that !1/1*(90*1))‘ = |¢*v| 0 = |v| o p o 1). For the latter,
notice that the set V' of all finite sums of the form ) . X4, ¢*v;, with (A4;); Borel partition
of Y and (v;); C .#, is a dense vector subspace of p*.#. Hence the set of all finite sums of
the form } . Xp; ¢*w;, with (B;); Borel partition of Z and (w;); C V, is dense in ¢*(p*.#),
thus proving that {¢*(¢*v) : v € .4} generates *(p*.4). O

We now investigate the relation between (p*.#)* and ¢*.#*. Under suitable assumptions,
it will turn out that the operations of taking the dual and passing to the pullback commute.

Proposition 21.2 Let (X,dx,mx), (Y,dy,my) be metric measure spaces and ¢ : Y — X
a map of bounded compression. Then there ezists a unique L (my)-bilinear and continuous
map B : p* M x o* M* — L' (my) such that B(¢*v,p*L) = L(v) o ¢ is satisfied my-a.e. for
every v € M and L € M*.

Proof. We are forced to declare B( > i XE, ¢*vi, Zj XF; go*Lj) = Z” XE;nr; Lj(vi)op. Since

ZXEij Lj(vi)op| = ZXEiij ‘Lj(vi)| op < ZXEmF]- |Lj|oplvilogp
i3 1,3 i,J

= ( ) Xe, MO@)( > " Xg, ’Lj’°¢>
( J

= ‘ E XEg, ¢ v; E XF; " Lj
: 7

we see that B is (well-defined and) continuous, whence it can be uniquely extended to an

I

operator B : ¢*.# x p*.#* — L'(my) satisfying all of the required properties. O
Proposition 21.3 Under the assumptions of Proposition[21.3, the map
I: "M — ("), W+— B(-,W) (21.2)

is well-defined, L>°(my)-linear continuous and preserving the pointwise norm, i.e. the my-a.e.
equality |[I(W)| = |W| holds for every W € o*.4*.
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Proof. The map I(W) : ¢*.# — L'(my) is L™ (my)-linear continuous by Proposition m
in other words I(W) € (¢*.#)*, which shows that I is well-posed. Moreover, notice that
’I(W)‘ = ess sup ‘B(V, W)’ < esssup |VI|[W|<|W| wmy-a.e.,
Vep*, Vep*,
[V]<1 my-a.e. [V]<1 my-a.e.

whence I can be easily proven to be L*°(my)-linear and continuous. Finally, to conclude it
suffices to prove that also [I(W)| > [W| holds my-a.e. in Y. By density, it is actually enough
to obtain it for W of the form Z?:l Xr; ¢*Lj. Then observe that

n n
l[T(W)| > ess sup I(W)(ZXFJ. go*vj> = prj ess sup Lj(vj) o
V1 ey UR EM , =1 =1 v €M,
[v1],..0,|vn| <1 mx-a.e. lv;|<1 mx-a.e.

n n
=D X |Ljlow =2 Xr "Lyl = W
Jj=1 J=1
holds my-a.e. in Y. Therefore the statement is achieved. O

Remark 21.4 In particular, Proposition shows that the map [ is an isometric embed-
ding of ¢*.#* into (¢*.#)*. However, as we are going to show in the next example, the
operator I needs not be surjective. |

Example 21.5 Suppose that X := {Z} and mx := dz. Moreover, let Y := [0, 1] be endowed
with the Lebesgue measure and denote by ¢ the unique map from Y to X, which is clearly of

bounded compression. Since L>(mx) ~ R, we can view any Banach space B as an L?(mx)-
normed module, so that Remark yields

(¢*B)" ~ (L*([0,1],B))’,
©*B* ~ L%([0,1],B).

In general, L%([0,1],B’) is only embedded into (LQ([O, 1],]B3))/, via the map that sends any
element ¢. € L?([0,1],B) to L?([0,1],B) > v. — fol l(vy) dt, which clearly belongs to the
space (L*([0, 1],]]3%))/. Now consider e.g. the case in which B := L'(0,1). Let us define the
map T : L*([0,1],L'(0,1)) — R as

1,1
T(f):= /0/0 fi(x) g(x)dxdt  for every f € L2([0, 1],L1(0,1)),

where g; := X[,4. Hence T does not come from any element of L?([0, 1], L>(0,1)): it should
come from the map ¢t — g € L>°(0,1), which is not essentially separably valued. This shows
that L*([0,1], L>°(0,1)) and the dual of L*([0, 1], L*(0,1)) are different.

Lemma 21.6 Let (X,dx,mx), (Y,dy,my) be metric measure spaces and ¢ : Y — X a map
of bounded compression. Let 7€ be a Hilbert module on X. Then o* 7 is a Hilbert module
as well.
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Proof. Notice that
2(le" v+l wl?) = 2(jof +|wl?) op = futwlPoptlv—wlfop = [p v+ w +]p v — g w|?

is satisfied my-a.e. for any v, w € . Then the pointwise parallelogram identity can be shown
to hold for elements of the form ), X g, ¢*v;, thus accordingly for all elements of ¢*.7# by an
approximation argument. This proves that p*.77 is a Hilbert module, as required. O

Proposition 21.7 Let (X,dx,mx), (Y,dy, my) be metric measure spaces and ¢ : Y — X a
map of bounded compression. Let € be a Hilbert module on X. Then

O A~ (P AV (21.3)
Proof. Consider the map I : p* % — (p*)* of Proposition We aim to prove that I

is surjective. Denote by &# : 9 — #* and 7% O* A — (p*H)* the Riesz isomorphisms,
as in Theorem Note that ¢* o Z : H — * I satisfies ‘(gp* o %)(v)’ = |v| o p my-
a.e. for any v € ¢, whence Theorem grants that there exists a unique L*°(my)-linear
continuous operator m D r A — ©*FC* such that m(ap*v) = (¢* o Z)(v) holds for

every v € . Now let us define J := m oA (p* ) — p* 7. We claim that

Given that I o J is L*°(my)-linear continuous by construction, it suffices to check that I o J
is the identity on the subspace {Z(¢*v) : v € S}, which generates (p*#)* as a module.
Observe that for any v, w € 5 it holds that

~

Z(P ) (¢"w) = (¢ v, 9 w) = (v,w) 0 ¢,
(I o J)(Z (™)) (¢"w) = I(p* 0 Z(p™)) (p*w) = I((¢" 0 ) (v)) (¢ w) = (Z(v)(w)) 0 ¢
= (v,w) 0 p,
whence ([21.4]) follows. This grants that I is surjective, thus concluding the proof. ]

Remark 21.8 Suppose that the map ¢ : Y — X is invertible and both ¢, ¢! have bounded
compression. Then Theorem m grants that (o~ 1)*(¢p*.#) ~ ./, thus in particular one has
that ©* : A4 — *.# is bijective. Hence, morally speaking, .# and ¢*.# are the same
module, up to identifying L°>°(mx) and L>°(my) via invertible map f — f o . [

Definition 21.9 (Maps of bounded deformation) Let (X,dx,mx), (Y,dy,my) be me-
tric measure spaces. Then a map ¢ : Y — X is said to be of bounded deformation provided
it is Lipschitz and of bounded compression.

A map of bounded deformation ¢ : Y — X naturally induces a map

p: C([0,1],Y) — C([0,1],X),
Y pon.

(21.5)

85



It is then easy to prove that

() is an AC curve in X and

visan AC curvein Y = ) ' ‘
‘90(7)15‘ < Llp(@) ‘%‘ for a.e. t.

(21.6)

Indeed, we have dx (np('yt), cp(’ys)) < Lip(¢) dy (74,7s) < Lip(¢p) fst |9 df for all s < t.

Lemma 21.10 Let 7 be a test plan on' Y and ¢ : Y — X a map of bounded deformation.
Then @, is a test plan on X.

Proof. Observe that
(e)s T = pu(er)«m < pu(Cmy) < Comp(p) Cmx  for every t € [0, 1],

/Ol/wt\Qd%W(v) dt:/(]l/lcp(v)t!de(fy) di < Lip(¢)2/01/ 2 dre(y) dt < 400,

whence the statement follows. O

By duality with Lemma [21.10], we can thus obtain the following result:

Proposition 21.11 Let ¢ : Y — X be a map of bounded deformation and f € S*(X). Then
it holds that f o ¢ € S*(Y) and

‘D(f o gp)} < Lip(¢)|Df|oy  holds my-a.e. inY. (21.7)

Proof. Since |Df| oy € L?*(my), it only suffices to prove that Lip(p) |Df| o ¢ is a weak upper
gradient for f. Then fix any test plan @ on Y. We have that

1
/\fosoom—fowoeo\dﬂ:/\foel—foeo!dso*ﬂé/o/lDf!(%) e dep ()
1 .

Z/O/\Dfl(<p(7)t) lo(7),| de () dt
1
< Lip(p) / [ (0110 0) 60 Fulam) at,

proving that Lip(¢) |Df] o ¢ is a weak upper gradient, as required. O

Theorem 21.12 (Pullback of 1-forms) Let (X,dx,mx), (Y,dy,my) be metric measure
spaces and ¢ : Y — X a map of bounded deformation. Then there exists a unique linear and
continuous operator ¢* : L*(T*X) — L*(T*Y) such that

e'df =d(foyp) forevery f € S2(X),

21.8
O (gw) =gopp*w for every g € L°°(mx) and w € L*(T*X). (21.8)

Moreover, it holds that
lo*w| < Lip(@) |w|o@ my-a.e.  for every w € L*(T*X). (21.9)
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Proof. We are obliged to define @*(ZZ XE, dfi) = . Xg, opd(fioyp). Given that

|
ZXEiosod(fiw)'ZZXso—l(Ei)\d(fiw)\ < Lip(p) Y Xe-1(my ldfilo @

9

= Lip(yp) ‘ Z Xg,; df;

we see that ¢* is well-defined, linear and continuous, then it can be uniquely extended to an
operator o* : L?(T*X) — L?(T*Y) having all the required properties. O

We have introduced two different notions of pullback for the cotangent module L?(T*X).
We shall make use of the notation ¢* : L?(T*X) — L?(T*Y) for the pullback described in
Theorem [21.12] while we write [¢*] : L?(T*X) — ¢*L?(T*X) for the one of Theorem

22 Lesson [29/01/2018]

Theorem 22.1 (Differential of a map of bounded deformation) Let us consider two
metric measure spaces (X,dx,mx) and (Y,dy,my). Suppose (X,dx,mx) is infinitesimally
Hilbertian. Let o : Y — X be a map of bounded deformation. Then there exists a unique
L>®(my)-linear continuous map dyp : L2(TY) — ¢*L*(TX), called differential of o, such that

[p*w](dp(v)) = p*w(v)  for every v € L*(TY) and w € L*(T*X). (22.1)
Moreover, it holds that

|de(v)| < Lip(¢) [v| my-a.e.  for every v € LX(TY). (22.2)
Proof. Denote by V' the generating linear subspace {[¢*w] : w € L*(T*X)} of ¢*L*(T*X).
Fix v € L}(TY) and define L, : V — Ll(my) as L,[¢*w] := ¢*w(v). The my-a.e. inequality

* * : : *
" w(v)| < Jp*wlfv] "< Lip(p) w0 ¢ [v] = Lip(y) [v] [[¢"w]] (22.3)

grants that L, is a well-defined, linear and continuous operator. Hence there exists a unique
element dyp(v) € (@*LQ(T*X))* ~ @*L*(TX) such that [¢p*w](de(v)) = ¢*w(v). Moreover,
such element necessarily satisfies ‘dcp(v)| < Lip(¢) |v| my-a.e. in Y. Thus to conclude it only
remains to show that the assignment L?(TY) 2 v + dp(v) € ¢*L*(TX) is L°°(my)-linear.

This follows from the chain of equalities

[p*w](de(f v)) = ¢*w(fv) = f ¢*w(v) = £ [p*w](dp(v)),
which holds my-a.e. for every choice of f € L%®(my) and v € L*(TY). O

In the case in which ¢ is invertible and its inverse is a map of bounded compression, we
have an alternative definition of differential:
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Theorem 22.2 Let (X,dx, mx), (Y,dy, my) be metric measure spaces and let ¢ : Y — X
be a map of bounded deformation. Suppose that ¢ is invertible and that ¢~ has bounded
compression. Then there exists a unique linear continuous operator dy : L?(TY) — L?(TX)
such that

w(dp(®)) = (p*w(®)) o™ mx-a.e. for everyv € L*(TY) and w € L*(T*X).  (22.4)
Moreover, it holds that

|dg0(v)’ < Lip(¢) [v] o ™! mx-a.e. for everyv € L*(TY). (22.5)

Proof. Fix v € L*(TY). Denote by dp(v) the map L*(T*X) 3> w = (¢*w(v)) o™t € L' (mx).
Given that |w(de(v))| < Lip(p) [w] [v] 0 9™, we know that de(v) is (linear and) continuous.
Moreover, for any f € L*°(mx) it holds

(P (fw)w) o™ = (fopygw(v) op™! = f (pw(v)) o,
thus proving the L>(mx)-linearity of d¢(v). Hence we have a map dy : L2(TY) — L?(TX),
which can be easily seen to satisfy all the required properties. ]
In the following result, the function (v,t) — || is defined everywhere, as in Remark
Theorem 22.3 (Speed of a test plan) Let (X,d,m) be an infinitesimally Hilbertian me-

tric measure space. Let m be a test plan on X. Then for almost every t € [0,1] there exists
an element m, € ef L*(TX) such that

L' (m)- lim fo e”hh_ ToC _tardf)(m))  for cvery f € WI(X). (22.6)

Moreover, the following hold:
i) the element of ef L*(TX) satisfying (22.6)) is unique,

ii) we have that |w}|(y) = || for (w x L1)-a.e. (7,t).

Proof. STEP 1. Notice that Proposition grants that W12(X) is separable, thus there
exists a countable dense Q-linear subspace D of W'2(X). By applying Theorem we see
that for any f € D it holds that (f o e;y, — f o e;)/h admits a strong L!(7)-limit as b — 0
for a.e. t. Moreover, the function M : [0,1] — R, M(t) := [|%|?dm(v) belongs to L'(0,1)
and the function (v,t) — |%| belongs to L?(mw x £1). Hence we can pick a Borel negligible
subset N C [0, 1] such that for every ¢ € [0,1] \ N the following hold:

e Der(f) :=limp_o (f o e, — foer)/h € L () exists for every f € D,

e ¢ is a Lebesgue point for M, so that in particular there exists a constant C; > 0 with
t+h

M(s)ds < Cy  for every h # 0 such that ¢t + h € [0, 1], (22.7)
t
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e the function v — || belongs to L?(r).

For any t € [0,1]\ N, we have that Der; : D — L!(m) is a linear operator satisfying (by item
ii) of Theorem the inequality

[Ders(£)|(2) < [DFI(w) |3l for wae. (228)

for every f € D. Hence it uniquely extends to a linear continuous Der; : W12(X) — Li(m)
satisfying the inequality (22.8) for all f € W1?(X).
STEP 2. Observe that for any ¢ € [0,1] \ N and g € W1?(X) it holds that

goet+h—goet
h

t+h
< /f |Dg|(s) 56| ds dm(7)
L (m) t

<( /]fm Dgl(r) ds dwm)m ( th(s) ds)m (229)
< \@H‘Dgwm(m) V.

where C'is the compression constant of 7, is satisfied for every h # 0 such that ¢t + h € [0, 1].
Now fix t € [0,1] \ N and f € W1?(X). Choose any sequence (f,), C D that converges to f
in W12(X). Therefore one has that

’foet—i-h_foet

- — Der(f)

L ()

fnoet+h — fnoe

<VOCHID(f = fi)lll oy + h

— Der(fn) + HDert(fn_f)HLl(Tf)’

()

so by first letting h — 0 and then n — oo we conclude that Der;(f) is the strong L!(7r)-limit
of (foewn — foey)/hash— 0.

STEP 3. Call V; := {[ejdf] : f € WH3(X)} for every t € [0,1] \ N. Define L; : V; — L(mr)
as Li[efdf] := Der;(f). Given that for any f € W12(X) property yields

[Luleidf1]() < |lefdfl| () [l for m-ae. .

we see that the operator L; (is well-defined, linear, continuous and) can be uniquely extended
to an element ) € efL?(TX) ~ (ejL*(T*X))". Therefore one has Der,(f) = [ejdf](m}) for
every f € WH2(X) and |m}|(y) < 54| for m-a.e. 7.

STEP 4. Given any f € LIPy(X) and 7 : [0,1] — X AC, it holds that f o~ is AC as well and
that for m-a.e. v we have (f(vi1n) — f(1))/h — S f(w) as h — 0 for a.e. t. Then

d

letdf)(mt)(v) = L () for (m x L)-ae. (7,1).

Since [efdf](w})(7) < |[efdf]|(7) |7} (v) < Lip(f) |m}|(y) holds for m-a.e. v, we deduce from
the previous formula that % (v¢) < Lip(f) |m}|(7) for w-a.e. 4. In order to conclude, it is
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thus sufficient to provide the existence of a countable family D’ C LIP,4(X) of 1-Lipschitz
functions such that for every AC curve « : [0,1] — X it holds

d
|9¢| = sup — f(y:) for ae. t €[0,1]. (22.10)

To do so, fix a countable dense subset (z,,), of X and let us define f,, ,, := (m —d(, a:n))+ for
every n,m € N. Then the family D’ := (fy, m)n,m does the job: given any z,y € X it clearly
holds that d(z,y) = sup,, ;, [fam(2) — frm(y)], whence for all 0 < s < ¢ <1 we have

| t d
d(%&a ’Ys) = sup [fn,m('yt) - fn,m('ys)] = sup/ difﬂ,m(ryT) dr < / sup 7fn,m(7r) dr.
n,m nmJg aTI’ s n,m dr
Therefore the thesis is achieved. O

23 Lesson [31/01/2018]

Definition 23.1 (Laplacian) Let (X,d,m) be an infinitesimally Hilbertian metric measure
space. Then a function f € WH2(X) is in D(A) provided there exists g € L?(m) such that

/ghdm = —/Vf -Vhdm  for every h € WH3(X). (23.1)

In this case the function g, which is uniquely determined by density of W12(X) in L%(m), will
be denoted by Af.

Remark 23.2 One has f € D(A) if and only if Vf € D(div). In this case, Af = div(V f).
In order to prove it, just observe that

/ df(Vh)dm = / Vf-Vhdm holds for every h € Wh?(X).
In particular, D(A) is a vector space and the map A : D(A) — L?(m) is linear. [

Proposition 23.3 Let (X,d, m) be infinitesimally Hilbertian. Then the following hold:
i) A is a closed operator from L?(m) to itself,

ii) if f € LIP(X) N D(A) and ¢ € C*(R) satisfies ¢ € L>(R), then ¢ o f € D(A) and
A(pof)=¢ o fAf+¢" o fIVFE, (23.2)
iii) if f,g9 € LIPy(X) N D(A), then fg € D(A) and

A(fg)=fAg+gAf+2Vf-Vg. (23.3)
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Proof. i) We aim to show that if f, — f and Af, — g in L?(m), then f € D(A) and Af = g.
There exists a constant C' > 0 such that || fnl 12(m)s |Afnll f2(m) < C for any n € N, so that

/|an|2dm<—/anfndm<C for every n € N.

This grants that (f,), is bounded in the reflexive space W12(X), whence there exists a
subsequence (n;); such that f,, — f weakly in W12(X), for some f € W12(X). We already
know that f,, — f in L%(m), then f = f and accordingly the original sequence (f), is
weakly converging in W2(X) to f. Since the differential operator d : W12(X) — L?(T*X)
is linear continuous, we infer that df,, — df weakly in L?(T*X). By the Riesz isomorphism,
this is equivalent to saying that V f,, — Vf weakly in L?(TX). Therefore

—/hgdm:— lim [ AAfydm= lim an-Vhdm:/Vf-Vhdm

is satisfied for every h € W2(X), thus proving that f € D(A) and Af = g.
ii) Note that po f € S3(X) and V(oo f) = ¢/ o f Vf. Since Vf € D(div) by Remark
and ¢’ o f € LIPy(X), we deduce from Proposition [17.10| that V(¢ o f) € D(div) and

Alpof)=div(¢ o fVf) =d(¢ o /)(VS) + ¢ o fdiv(VF) = ¢" o fIVF? + ¢ o fAF,

which proves (23.2)).
iii) Note that fg € S%(X) and V(fg) = f Vg + g Vf. By applying again Proposition [17.10
we deduce that V(fg) € D(div) and

A(fg) =div(fVg+gVf) =df(Vg) + fdiv(Vg) +dg(Vf) + gdiv(Vf)
=fAg+gAf+2Vf Vg,

which proves ([23.3]). ]
We now provide an alternative characterisation of the Laplacian operator.

Let H be a Hilbert space and let £ : H — [0,+00] be a convex lsc functional. Given any
point x € H such that E(x) < oo, we define the subdifferential of E at x as

O E(x):={veH : E(x)+ (v,y—x) < E(y) for every y € H}. (23.4)
It trivially holds that 0 € 0~ E/(x) if and only if « is a minimum point of E.
Exercise 23.4 Consider H := R and E(x) := |z| for every € R. Then

{1} it x>0,
0" E(x) =1 [-1,1] if =0, (23.5)
-1 if 2 < 0.

Proposition 23.5 The following hold:
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i) the multivalued map 0~ E : H — 2" is a monotone operator, i.e.

(x—y,v—w) >0 foreveryx,y € H,ved Ex) andw € 0~ E(y), (23.6)

ii) the set {(z,v) € Hx H : ve€ " E(z)} is closed in H x H.
Proof. i) From v € 0~ E(z) and w € 0~ E(y) we deduce that
B() + (v, — 2) < B(y),
E(y) + (w,z —y) < E(x),

respectively. By summing the two in (23.7) we obtain (v — w,y — x) < 0, proving (123.6]).
ii) Fix two sequences (xy)n, (vn)n € H such that x,, — z, v, = v and v, € 0~ E(x,). Hence
for any y € H it holds that

(23.7)

E(z) + (v,y —z) < lim E(z,) + lim (vn, y — wn) < E(y),

n—oo

thus showing that v € 9~ E(x). This proves the statement. U

Remark 23.6 It actually holds that {(z,v) € H x H : v € 0" E(z)} is strongly-weakly
closed in H x H, which means that

T, — x strongly in H,

v, — v weakly in H, = wveI Ex). (23.8)
vy, € 0T E(xy,) for all n
The proof is the same of item ii) of Proposition [23.5] [

Proposition 23.7 Let (X,d,m) be infinitesimally Hilbertian. Call E : L*(m) — [0, +oc] the
Cheeger energy, which is the convex lsc functional that is defined as E(f) := % [V £]?dm for
any f € WH2(X) and equal to +oc elsewhere. Then a function f € WH2(X) belongs to D(A)

if and only if 0 E(f) # 0. In this case, it holds that 0~ E(f) = {—Af}.
Proof. First of all, observe that for any f,g € W2?(X) we have that

R>e— E(f+¢eg) is convex and lim E(f+e9) = E(J) = /Vf -Vgdm, (23.9)

e—0 e

as one can readily deduce from the fact that E(f+eg) = 5 [ |[Vf|?+2eVf-Vg+e2|Vg|* dm.
Let f € D(A). We want to show that E(f)— [ g Afdm < E(f+g) for every g € W12(X).
In order to prove it, just notice that (23.9)) yields

E(f +9) - B(f) > lim BUteo) = B =/Vf-v9dm= —/gAfdm,

which grants that —Af € 0~ E(f).
Conversely, let v € 9" E(f). Then ¢ [vgdm < E(f +eg) — E(f) holds for every ¢ € R
and g € WH2(X). Therefore we have that

/vf_vgdm:i%E(f—Eg)—E(f) §/Ugdﬂ1§ii\rj(l)E<f+€g)_E(f) :/Vf-ngm

—& 9

for every g € WH2(X). This says that f € D(A) and Af = —v. O
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Lemma 23.8 Let H be a Hilbert space. Let [0,1] >t +— v, € H be an AC curve. Then

Jlim =Y e H o for ace. t € [0, 1]. (23.10)
h—0 h

Moreover, the map t — v, belongs to Ll([(), 1], H) and satisfies

¢
UV — Vg = / vl.dr  for every s,t € [0,1] with s < t. (23.11)
S

Proof. Since v is essentially separably valued, we assume with no loss of generality that H is
separable. Fix an orthonormal basis (e,,), of H. Given any n € N, we have that ¢t — v;-e, € R
is AC and accordingly a.e. differentiable. Hence there exists a Borel negligible set N C [0, 1]
such that

30,(t) == illg% Vtth ' enh_ U e R for every n € Nand t € [0,1] \ N.

For any k € N, call Ly (t) := SF_ 0, (t)e, € Hift € [0,1]\ N and Ly(t) :==0 € H if t € N.
Clearly the map Ly : [0,1] — H is strongly Borel. Moreover, for any k € N it holds that

00 k k
2 . 2 . . Vi4h — Ut
2O = Jim 3 6O = fim Jim 3|75 e
n=0 n=0 n=0 (23.12)
2
< lim || 20— |92 < 400 for a.e. t € [0,1]\ N
h—0 h I
In particular, for a.e. t € [0,1]\ N there exists L(t) € H such that limy, || Lg(t) — L t)HH =

We also deduce from ([23.12) that HL(t)HH < |ty| for a.e. t € [0, 1], whence L : [0,1] — H
is Bochner integrable by Proposition [5.13] By applying the dominated convergence theorem,
we see that fst L(r)dr = limy fst Ly (r)dr for every t,s € [0,1] with s <, so that

k

¢
v = Jim Y [(vr = ve) - enfen = klgr;oZ ([ tnar) e i [ raorar
t
= / L(r)dr.
S
Hence v is a.e. differentiable, with derivative v’ := L, proving the statement. U

Theorem 23.9 (Heat flow) Let (X,d,m) be an infinitesimally Hilbertian metric measure
space. Then for every f € L?(m) there erists a unique map [0,+00) 3t — f; € L?(m) with
the following properties:

i) fo=f and [0,4+00) >t f; € L2(m) is continuous,
ii) the map (0,4+00) >t — f; € L2(m) is locally absolutely continuous,

iii) for a.e. t > 0 it holds that fy € D(A) and f/ = Afy.
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The previous theorem is a special case of the following result:

Theorem 23.10 (Gradient flow) Let H be a Hilbert space and let E : H — [0, +00] be a
convex lsc functional whose domain D(E) := {v €H:EW)< —l—oo} is dense in H. Then for
every v € H there exists a unique map [0, +00) 3 t — v, € H with the following properties:

i) vo =v and [0,400) >t — v, € H is continuous,
ii) the map (0,+00) 3 t+— v € H is locally absolutely continuous,

ili) for a.e. t > 0 it holds that —v; € O~ E(vy).

24 Lesson [05/02/2018]

Let H be a Hilbert space. Let E : H — [0,400] be a convex lsc functional that is not
identically equal to +o00. Then we define

DEE):={z€H : E(z) < +oo},
DO E):={z€H : 9 E(z)#0} C D(E).

The slope of E is the functional |07 E|: H — [0,400] given by

sup,., (E(y) — E(x)) /|lz — y| if z € D(E),
400 otherwise.

|0” El(x) == {
Observe that |07 E|(z) = 0 if and only if = is a minimum point of E.
Remark 24.1 We claim that
|0” El(x) < |v| for every v € 07 E(x). (24.1)

Indeed, we know that E(z)+ (v,y—z) < E(y) for any y € H, so that E(z)— E(y) < |[v||z—y]
and accordingly (E(z) — E(y))Jr < |v| |x — y| for any y € H, which gives (24.1)). [

Exercise 24.2 Given any «x € H and 7 > 0, let us define

|- —=/?
2T

For(r) = E() + (24.2)

Then it holds that 0~ F, - (y) = 0~ E(y) + == for every y € H.

Proposition 24.3 Let x € H and 7 > 0. Then there exists a unique minimiser x, € H of
the functional F; . defined in (24.2)). Moreover, it holds that == € —0~ E(x-).

Proof. Since E is convex Isc and | - —z|?/(27) is strictly convex and continuous, we get that
the functional F), , is strictly convex and lsc. This grants that the sublevels of F, , are convex
and strongly closed, so that they are also weakly closed by Hahn-Banach theorem, in other
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words F} , is weakly lsc. Moreover, the sublevels of | - —z|?/(27) are bounded, whence those
of F, . are bounded as well, thus is particular they are weakly compact. Then Bolzano-
Weierstrass theorem yields existence of a minimum point . € H of F, ;, which is unique
by strict convexity of F, . Finally, since the point z, is a minimiser for Fj -, we know from
Exercise that 0 € 07 Fy,(v,) = 0" E(z;) + %, or equivalently *—* € -0~ E(z,),
which gives the last statement. O

Corollary 24.4 It holds that D(0~ E) is dense in D(E) and that

|0” El(z;) < lzr = 2| <|0"E|(x) for every x € H and T > 0. (24.3)
T

Proof. Given any = € D(E), we deduce from the very definition of x, that

2
m |z, — 2 < Tm 27 (E(xT) + M) < lim 27 E(z) =0,
7\0 7\.0 2T 7\.0

whence the first statement follows. Moreover, since *—*= € 9~ E(z,) by Proposition we
infer from (24.1) that |z, — x|/7 > |07 E|(x;). To conclude, define z) := (1 — ) z + Az, for
every A € [0,1]. The minimality of z, and the convexity of E give

2

2
E(z;) + w < E(2)) + 2,\27—55\ < (11— N\ E(z) + AE(z,) + \? w
for every A € [0, 1], which can be rewritten as
|z — 2|
(1= N (E(z) — E(z;)) > (1 - \?) 7277 for every A € [0, 1],
so that % > (1+N) % for all A € [0,1]. By letting A 1 in such inequality, we
conclude that |07 E|(z) > E(T;:ig(rf) > |mTT_x|. Hence the thesis is achieved. O

Remark 24.5 We claim that the functional |07 E|: H — [0, 400] is Isc.
In order to prove it, for any y € H we define G, : H — [0, +00] as

Gy () == { (()E(y) — E(I))_/|x — ii 7: Z’

with the convention that (E(y) — E(z))” := 400 when E(z) = E(y) = +oc. It can be readily
checked that |0~ E|(z) = sup,cy Gy(z) for every z € H. Given that each functional G is Isc
by construction, we conclude that |0~ E| is Isc as well. [

Lemma 24.6 It holds that

|0"El(x) = min |v| for every x € H. (24.4)

vEO~ E(x)
Proof. The inequality < is granted by (24.1)). To prove >, notice that |0~ E|(z) > |z — z-|/T
for all 7 > 0 by . We can clearly assume wlog that © € D(0~ F). Therefore there exists
a sequence (7,,)n N\ 0 such that % — v