We study curvature functionals for immersed 2-spheres in non-compact, three-dimensional Riemannian manifold $(M,h)$ without boundary. First, under the assumption that $(M,h)$ is the euclidean 3-space endowed with a semi-perturbed metric with perturbation small in $C^1$ norm and of compact support, we prove that if there is some point $\bar{x}\in M$ with scalar curvature $R^M(\bar{x})>0$ then there exists a smooth embedding $ f:\mathbb{S}^2 \hookrightarrow M$ minimizing the Willmore functional $\frac{1}{4}\int |H|^2$, where $H$ is the mean curvature. Second, assuming that $(M,h)$ is of bounded geometry (i.e. bounded sectional curvature and strictly positive injectivity radius) and asymptotically euclidean or hyperbolic we prove that if there is some point $\bar{x}\in M$ with scalar curvature $R^M(\bar{x})>6$ then there exists a smooth immersion $f:\mathbb{S}^2\hookrightarrow M$ minimizing the functional $\int (\frac{1}{2}|A|^2+1)$, where $A$ is the second fundamental form. Finally, adding the bound $K^M \leq 2$ to the last assumptions, we obtain a smooth minimizer $f:\mathbb{S}^2 \hookrightarrow M$ for the functional $\int \frac{1}{4}(|H|^2+1)$. The assumptions of the last two theorems are satisfied in a large class of 3-manifolds arising as spacelike timeslices solutions of the Einstein vacuum equation in case of null or negative cosmological constant.

10aDirect methods in the calculus of variations10aGeneral Relativity10aGeometric measure theory10asecond fundamental form10aWillmore functional1 aMondino, Andrea1 aSchygulla, Johannes uhttp://www.sciencedirect.com/science/article/pii/S0294144913000851