In this paper, we estimate from above the area of the graph of a singular map u taking a disk to three vectors, the vertices of a triangle, and jumping along three $\mathcal{C}^2$-embedded curves that meet transversely at only one point of the disk. We show that the singular part of the relaxed area can be estimated from above by the solution of a Plateau-type problem involving three entangled nonparametric area-minimizing surfaces. The idea is to ``fill the hole'' in the graph of the singular map with a sequence of approximating smooth two-codimensional surfaces of graph-type, by imagining three minimal surfaces, placed vertically over the jump of u, coupled together via a triple point in the target triangle. Such a construction depends on the choice of a target triple point, and on a connection passing through it, which dictate the boundary condition for the three minimal surfaces. We show that the singular part of the relaxed area of u cannot be larger than what we obtain by minimizing over all possible target triple points and all corresponding connections.

1 aBellettini, Giovanni1 aElshorbagy, Alaa1 aPaolini, Maurizio1 aScala, Riccardo uhttps://doi.org/10.1007/s10231-019-00887-000668nas a2200109 4500008004100000245006600041210005900107520027500166100002500441700002100466856007100487 2019 eng d00aOn the square distance function from a manifold with boundary0 asquare distance function from a manifold with boundary3 aWe characterize arbitrary codimensional smooth manifolds $\mathcal{M}$ with boundary embedded in $\mathbb{R}^n$ using the square distance function and the signed distance function from $\mathcal{M}$ and from its boundary. The results are localized in an open set.

1 aBellettini, Giovanni1 aElshorbagy, Alaa uhttp://cvgmt.sns.it/media/doc/paper/4260/manif_with_bound_dist.pdf01671nas a2200205 4500008004100000022001400041245009100055210006900146300001100215490000800226520095800234653002501192653005401217653002501271653002901296100002501325700001901350700002501369856007101394 2018 eng d a0021-782400aMinimizing movements for mean curvature flow of droplets with prescribed contact angle0 aMinimizing movements for mean curvature flow of droplets with pr a1 - 580 v1173 aWe study the mean curvature motion of a droplet flowing by mean curvature on a horizontal hyperplane with a possibly nonconstant prescribed contact angle. Using the solutions constructed as a limit of an approximation algorithm of Almgren–Taylor–Wang and Luckhaus–Sturzenhecker, we show the existence of a weak evolution, and its compatibility with a distributional solution. We also prove various comparison results. Résumé Nous étudions le mouvement par courbure moyenne d'une goutte qui glisse par courbure moyenne sur un hyperplan horizontal avec un angle de contact prescrit éventuellement non constant. En utilisant les solutions construites comme limites d'un algorithme d'approximation dû à Almgren, Taylor et Wang et Luckhaus et Sturzenhecker, nous montrons l'existence d'une évolution faible, et sa compatibilité avec une solution au sens des distributions. Nous démontrons également plusieurs résultats de comparaison.

10aCapillary functional10aMean curvature flow with prescribed contact angle10aMinimizing movements10aSets of finite perimeter1 aBellettini, Giovanni1 aNovaga, Matteo1 aKholmatov, Shokhrukh uhttp://www.sciencedirect.com/science/article/pii/S002178241830082501065nas a2200133 4500008004100000245006300041210006300104300001400167490000700181520065400188100002500842700002500867856003900892 2018 eng d00aMinimizing Movements for Mean Curvature Flow of Partitions0 aMinimizing Movements for Mean Curvature Flow of Partitions a4117-41480 v503 aWe prove the existence of a weak global in time mean curvature flow of a bounded partition of space using the method of minimizing movements. The result is extended to the case when suitable driving forces are present. We also prove some consistency results for a minimizing movement solution with smooth and viscosity solutions when the evolution starts from a partition made by a union of bounded sets at a positive distance. In addition, the motion starting from the union of convex sets at a positive distance agrees with the classical mean curvature flow and is stable with respect to the Hausdorff convergence of the initial partitions.

1 aBellettini, Giovanni1 aKholmatov, Shokhrukh uhttps://doi.org/10.1137/17M115929401160nas a2200205 4500008004100000022001400041245006400055210006400119300000900183490000700192520049200199653003500691653001800726653003600744653002900780100002500809700001900834700002500853856007600878 2017 eng d a1534-039200aMinimizers of anisotropic perimeters with cylindrical norms0 aMinimizers of anisotropic perimeters with cylindrical norms a14270 v163 aWe study various regularity properties of minimizers of the Φ–perimeter, where Φ is a norm. Under suitable assumptions on Φ and on the dimension of the ambient space, we prove that the boundary of a cartesian minimizer is locally a Lipschitz graph out of a closed singular set of small Hausdorff dimension. Moreover, we show the following anisotropic Bernstein-type result: any entire cartesian minimizer is the subgraph of a monotone function depending only on one variable.

10aanisotropic Bernstein problem;10aminimal cones10aNon parametric minimal surfaces10aSets of finite perimeter1 aBellettini, Giovanni1 aNovaga, Matteo1 aKholmatov, Shokhrukh uhttp://aimsciences.org//article/id/47054f15-00c7-40b7-9da1-4c0b1d0a103d01524nas a2200157 4500008004100000245011100041210006900152300001000221490000700231520095900238653002001197100002501217700001801242700002201260856008401282 2016 en d00aOn the area of the graph of a piecewise smooth map from the plane to the plane with a curve discontinuity0 aarea of the graph of a piecewise smooth map from the plane to th a29-630 v223 aIn this paper we provide an estimate from above for the value of the relaxed area functional for a map defined on a bounded domain of the plane with values in the plane and discontinuous on a regular simple curve with two endpoints. We show that, under suitable assumptions, the relaxed area does not exceed the area of the regular part of the map, with the addition of a singular term measuring the area of a disk type solution of the Plateau's problem spanning the two traces of the map on the jump. The result is valid also when the area minimizing surface has self intersections. A key element in our argument is to show the existence of what we call a semicartesian parametrization of this surface, namely a conformal parametrization defined on a suitable parameter space, which is the identity in the first component. To prove our result, various tools of parametric minimal surface theory are used, as well as some result from Morse theory.

10aArea functional1 aBellettini, Giovanni1 aTealdi, Lucia1 aPaolini, Maurizio uhttps://www.esaim-cocv.org/articles/cocv/abs/2016/01/cocv140065/cocv140065.html01380nas a2200133 4500008004300000245007200043210006900115260001500184520093400199100001901133700001801152700002501170856005101195 2015 en_Ud 00aAnisotropic mean curvature on facets and relations with capillarity0 aAnisotropic mean curvature on facets and relations with capillar bde Gruyter3 aWe discuss the relations between the anisotropic calibrability of a facet F of a solid crystal E, and the capillary problem on a capillary tube with base F. When F is parallel to a facet of the Wulff shape, calibrability is equivalent to show the existence of an anisotropic subunitary vector field in $F, with suitable normal trace on the boundary of the facet, and with constant divergence equal to the anisotropic mean curvature of F. When the Wulff shape is a cylynder, assuming E convex at F, and F (strictly) calibrable, such a vector field is obtained by solving the capillary problem on F in absence of gravity and with zero contact angle. We show some examples of facets for which it is possible, even without the strict calibrability assumption, to build one of these vector fields. The construction provides, at least for convex facets of class C^{1,1}, the solution of the total variation flow starting at 1_F.

1 aAmato, Stefano1 aTealdi, Lucia1 aBellettini, Giovanni uhttp://urania.sissa.it/xmlui/handle/1963/3448101205nas a2200121 4500008004300000245007700043210006900120520072500189100001900914700002500933700002200958856010300980 2015 en_Ud 00aConstrained BV functions on double coverings for Plateau's type problems0 aConstrained BV functions on double coverings for Plateaus type p3 aWe link Brakke's "soap films" covering construction with the theory of finite perimeter sets, in order to study Plateau's problem without fixing a priori the topology of the solution. The minimization is set up in the class of $BV$ functions defined on a double covering space of the complement of an $(n − 2)$-dimensional smooth compact manifold $S$ without boundary. The main novelty of our approach stands in the presence of a suitable constraint on the fibers, which couples together the covering sheets. The model allows to avoid all issues concerning the presence of the boundary $S$. The constraint is lifted in a natural way to Sobolev spaces, allowing also an approach based on $Γ$-convergence theory.

1 aAmato, Stefano1 aBellettini, Giovanni1 aPaolini, Maurizio uhttps://math.sissa.it/publication/constrained-bv-functions-double-coverings-plateaus-type-problems00953nas a2200121 4500008004100000245009700041210006900138520050800207100001800715700002500733700002200758856005100780 2015 en d00aResults on the minimization of the Dirichlet functional among semicartesian parametrizations0 aResults on the minimization of the Dirichlet functional among se3 aWe start to investigate the existence of conformal minimizers for the Dirichlet functional in the setting of the so-called semicartesian parametrizations, adapting to this context some techniques used in solving the classical Plateau's problem. The final goal is to find area minimizing semicartesian parametrizations spanning a Jordan curve obtained as union of two graphs; this problem appeared in the study of the relaxed area functional for maps from the plane to the plane jumping on a line.

1 aTealdi, Lucia1 aBellettini, Giovanni1 aPaolini, Maurizio uhttp://urania.sissa.it/xmlui/handle/1963/3448801475nas a2200121 4500008004100000245011300041210006900154520101400223100001801237700002501255700002201280856005101302 2015 en d00aSemicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity0 aSemicartesian surfaces and the relaxed area of maps from the pla3 aWe address the problem of estimating the area of the graph of a map u, defined on a bounded planar domain O and taking values in the plane, jumping on a segment J, either compactly contained in O or having both the end points on the boundary of O. We define the relaxation of the area functional w.r.t. a sort of uniform convergence, and we characterize it in terms of the infimum of the area among those surfaces in the space spanning the graphs of the traces of u on the two side of J and having what we have called a semicartesian structure. We exhibit examples showing that the relaxed area functional w.r.t the L^1 convergence may depend also on the values of u far from J, and on the relative position of J w.r.t. the boundary of O; these examples confirm the non-local behaviour of the L^1 relaxed area functional, and justify the interest in studying the relaxation w.r.t. a stronger convergence. We prove also that the L^1 relaxed area functional in non-subadditive for a rather class of maps.

1 aTealdi, Lucia1 aBellettini, Giovanni1 aPaolini, Maurizio uhttp://urania.sissa.it/xmlui/handle/1963/3448301016nas a2200145 4500008004100000020001500041245007100056210006500127520044300192653007200635100001900707700002500726700002200751856009700773 2013 en d a887642472400aThe nonlinear multidomain model: a new formal asymptotic analysis.0 anonlinear multidomain model a new formal asymptotic analysis3 aWe study the asymptotic analysis of a singularly perturbed weakly parabolic system of m- equations of anisotropic reaction-diffusion type. Our main result formally shows that solutions to the system approximate a geometric motion of a hypersurface by anisotropic mean curvature. The anisotropy, supposed to be uniformly convex, is explicit and turns out to be the dual of the star-shaped combination of the m original anisotropies.

10abidomain model, anisotropic mean curvature, star-shaped combination1 aAmato, Stefano1 aBellettini, Giovanni1 aPaolini, Maurizio uhttps://math.sissa.it/publication/nonlinear-multidomain-model-new-formal-asymptotic-analysis00375nas a2200121 4500008004100000245004500041210004500086260001800131100002500149700002300174700002100197856003500218 1995 en d00aSpecial functions of bounded deformation0 aSpecial functions of bounded deformation bSISSA Library1 aBellettini, Giovanni1 aCoscia, Alessandra1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/978