Abstract This work explores the development and the analysis of an efficient reduced order model for the study of a bifurcating phenomenon, known as the Coand? effect, in a multi-physics setting involving fluid and solid media. Taking into consideration a fluid-structure interaction problem, we aim at generalizing previous works towards a more reliable description of the physics involved. In particular, we provide several insights on how the introduction of an elastic structure influences the bifurcating behavior. We have addressed the computational burden by developing a reduced order branch-wise algorithm based on a monolithic proper orthogonal decomposition. We compared different constitutive relations for the solid, and we observed that a nonlinear hyper-elastic law delays the bifurcation w.r.t. the standard model, while the same effect is even magnified when considering linear elastic solid.

10aBifurcation theory10aCoandă effect10acontinuum mechanics10afluid dynamics10amonolithic method10aparametrized fluid-structure interaction problem10aProper orthogonal decomposition10areduced order modeling1 aKhamlich, Moaad1 aPichi, Federico1 aRozza, Gianluigi uhttps://doi.org/10.1002/fld.511800476nas a2200097 4500008004100000245010500041210006900146100002100215700002100236856012100257 2022 eng d00aModel Reduction Using Sparse Polynomial Interpolation for the Incompressible Navier-Stokes Equations0 aModel Reduction Using Sparse Polynomial Interpolation for the In1 aHess, Martin, W.1 aRozza, Gianluigi uhttps://math.sissa.it/publication/model-reduction-using-sparse-polynomial-interpolation-incompressible-navier-stokes02363nas a2200349 4500008004100000245014100041210006900182490000800251520110500259653001401364653002901378653002401407653002501431653002001456653002701476653001501503653003401518653003501552653002401587653001901611653003301630653002701663653002801690653002401718653001601742100002201758700001701780700002301797700002201820700002101842856015001863 2022 eng d00aThe Neural Network shifted-proper orthogonal decomposition: A machine learning approach for non-linear reduction of hyperbolic equations0 aNeural Network shiftedproper orthogonal decomposition A machine 0 v3923 aModels with dominant advection always posed a difficult challenge for projection-based reduced order modelling. Many methodologies that have recently been proposed are based on the pre-processing of the full-order solutions to accelerate the Kolmogorov N−width decay thereby obtaining smaller linear subspaces with improved accuracy. These methods however must rely on the knowledge of the characteristic speeds in phase space of the solution, limiting their range of applicability to problems with explicit functional form for the advection field. In this work we approach the problem of automatically detecting the correct pre-processing transformation in a statistical learning framework by implementing a deep-learning architecture. The purely data-driven method allowed us to generalise the existing approaches of linear subspace manipulation to non-linear hyperbolic problems with unknown advection fields. The proposed algorithm has been validated against simple test cases to benchmark its performances and later successfully applied to a multiphase simulation. © 2022 Elsevier B.V.

10aAdvection10aComputational complexity10aDeep neural network10aDeep neural networks10aLinear subspace10aMultiphase simulations10aNon linear10aNonlinear hyperbolic equation10aPartial differential equations10aPhase space methods10aPre-processing10aPrincipal component analysis10areduced order modeling10aReduced order modelling10aReduced-order model10aShifted-POD1 aPapapicco, Davide1 aDemo, Nicola1 aGirfoglio, Michele1 aStabile, Giovanni1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124488633&doi=10.1016%2fj.cma.2022.114687&partnerID=40&md5=12f82dcaba04c4a7c44f8e5b2010199701567nas a2200217 4500008004100000020001400041245011400055210007100169260001600240300001100256520078900267653002401056653003001080653003601110653002401146653004201170100002301212700002101235700002101256856007201277 2022 eng d a0045-793000aA POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation0 aPODGalerkin reduced order model for the Navier–Stokes equations c2022/06/14/ a1055363 aWe develop a Proper Orthogonal Decomposition (POD)-Galerkin based Reduced Order Model (ROM) for the efficient numerical simulation of the parametric Navier–Stokes equations in the stream function-vorticity formulation. Unlike previous works, we choose different reduced coefficients for the vorticity and stream function fields. In addition, for parametric studies we use a global POD basis space obtained from a database of time dependent full order snapshots related to sample points in the parameter space. We test the performance of our ROM strategy with the well-known vortex merger benchmark and a more complex case study featuring the geometry of the North Atlantic Ocean. Accuracy and efficiency are assessed for both time reconstruction and physical parametrization.

10aGalerkin projection10aNavier–Stokes equations10aProper orthogonal decomposition10aReduced order model10aStream function-vorticity formulation1 aGirfoglio, Michele1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://www.sciencedirect.com/science/article/pii/S004579302200164501165nas a2200133 4500008004100000245014700041210007100188520056100259100001900820700002400839700002100863700001600884856013100900 2022 eng d00aProjection based semi–implicit partitioned Reduced Basis Method for non parametrized and parametrized Fluid–Structure Interaction problems0 aProjection based semi–implicit partitioned Reduced Basis Method 3 aThe goal of this manuscript is to present a partitioned Model Order Reduction method that is based on a semi-implicit projection scheme to solve multiphysics problems. We implement a Reduced Order Method based on a Proper Orthogonal Decomposition, with the aim of addressing both time-dependent and time-dependent, parametrized Fluid-Structure Interaction problems, where the fluid is incompressible and the structure is thick and two dimensional.

1 aNonino, Monica1 aBallarin, Francesco1 aRozza, Gianluigi1 aMaday, Yvon uhttps://math.sissa.it/publication/projection-based-semi%E2%80%93implicit-partitioned-reduced-basis-method-non-parametrized-and00660nas a2200169 4500008004100000245010500041210006900146653005200215653004300267653002100310653002900331653003300360100002200393700001700415700002100432856003700453 2022 eng d00aA Proper Orthogonal Decomposition approach for parameters reduction of Single Shot Detector networks0 aProper Orthogonal Decomposition approach for parameters reductio10aComputer Vision and Pattern Recognition (cs.CV)10aFOS: Computer and information sciences10aFOS: Mathematics10aMachine Learning (cs.LG)10aNumerical Analysis (math.NA)1 aMeneghetti, Laura1 aDemo, Nicola1 aRozza, Gianluigi uhttps://arxiv.org/abs/2207.1355100542nas a2200121 4500008004100000245009900041210006900140100002000209700002400229700002100253700002200274856012400296 2021 eng d00aAn artificial neural network approach to bifurcating phenomena in computational fluid dynamics0 aartificial neural network approach to bifurcating phenomena in c1 aPichi, Federico1 aBallarin, Francesco1 aRozza, Gianluigi1 aHesthaven, Jan, S uhttps://math.sissa.it/publication/artificial-neural-network-approach-bifurcating-phenomena-computational-fluid-dynamics00549nas a2200133 4500008004100000245010000041210006900141300001100210490000700221100002100228700001900249700002100268856012600289 2021 eng d00aATHENA: Advanced Techniques for High dimensional parameter spaces to Enhance Numerical Analysis0 aATHENA Advanced Techniques for High dimensional parameter spaces a1001330 v101 aRomor, Francesco1 aTezzele, Marco1 aRozza, Gianluigi uhttps://math.sissa.it/publication/athena-advanced-techniques-high-dimensional-parameter-spaces-enhance-numerical-analysis00533nas a2200109 4500008004100000245012200041210006900163100002200232700002400254700002100278856012400299 2021 eng d00aA CERTIFIED REDUCED BASIS Method FOR LINEAR PARAMETRIZED PARABOLIC OPTIMAL CONTROL PROBLEMS IN SPACE-TIME FORMULATION0 aCERTIFIED REDUCED BASIS Method FOR LINEAR PARAMETRIZED PARABOLIC1 aStrazzullo, Maria1 aBallarin, Francesco1 aRozza, Gianluigi uhttps://math.sissa.it/publication/certified-reduced-basis-method-linear-parametrized-parabolic-optimal-control-problems02606nas a2200265 4500008004100000022001400041245009300055210006900148300001100217490000800228520174600236653003101982653003302013653001902046653002602065653002002091653003602111100002102147700002102168700001902189700002202208700001702230700002102247856007202268 2021 eng d a0045-793000aOn the comparison of LES data-driven reduced order approaches for hydroacoustic analysis0 acomparison of LES datadriven reduced order approaches for hydroa a1048190 v2163 aIn this work, Dynamic Mode Decomposition (DMD) and Proper Orthogonal Decomposition (POD) methodologies are applied to hydroacoustic dataset computed using Large Eddy Simulation (LES) coupled with Ffowcs Williams and Hawkings (FWH) analogy. First, a low-dimensional description of the flow fields is presented with modal decomposition analysis. Sensitivity towards the DMD and POD bases truncation rank is discussed, and extensive dataset is provided to demonstrate the ability of both algorithms to reconstruct the flow fields with all the spatial and temporal frequencies necessary to support accurate noise evaluation. Results show that while DMD is capable to capture finer coherent structures in the wake region for the same amount of employed modes, reconstructed flow fields using POD exhibit smaller magnitudes of global spatiotemporal errors compared with DMD counterparts. Second, a separate set of DMD and POD modes generated using half the snapshots is employed into two data-driven reduced models respectively, based on DMD mid cast and POD with Interpolation (PODI). In that regard, results confirm that the predictive character of both reduced approaches on the flow fields is sufficiently accurate, with a relative superiority of PODI results over DMD ones. This infers that, discrepancies induced due to interpolation errors in PODI is relatively low compared with errors induced by integration and linear regression operations in DMD, for the present setup. Finally, a post processing analysis on the evaluation of FWH acoustic signals utilizing reduced fluid dynamic fields as input demonstrates that both DMD and PODI data-driven reduced models are efficient and sufficiently accurate in predicting acoustic noises.

10aDynamic mode decomposition10aFfowcs Williams and Hawkings10aHydroacoustics10aLarge eddy simulation10aModel reduction10aProper orthogonal decomposition1 aGadalla, Mahmoud1 aCianferra, Marta1 aTezzele, Marco1 aStabile, Giovanni1 aMola, Andrea1 aRozza, Gianluigi uhttps://www.sciencedirect.com/science/article/pii/S004579302030389300619nas a2200133 4500008004100000245014300041210006900184100002200253700002300275700002400298700001600322700002100338856012600359 2021 eng d00aConsistency of the full and reduced order models for Evolve-Filter-Relax Regularization of Convection-Dominated, Marginally-Resolved Flows0 aConsistency of the full and reduced order models for EvolveFilte1 aStrazzullo, Maria1 aGirfoglio, Michele1 aBallarin, Francesco1 aIliescu, T.1 aRozza, Gianluigi uhttps://math.sissa.it/publication/consistency-full-and-reduced-order-models-evolve-filter-relax-regularization-convection00572nas a2200121 4500008004100000245013300041210006900174100002300243700002200266700001900288700002100307856012200328 2021 eng d00aA data-driven partitioned approach for the resolution of time-dependent optimal control problems with dynamic mode decomposition0 adatadriven partitioned approach for the resolution of timedepend1 aDonadini, Eleonora1 aStrazzullo, Maria1 aTezzele, Marco1 aRozza, Gianluigi uhttps://math.sissa.it/publication/data-driven-partitioned-approach-resolution-time-dependent-optimal-control-problems00456nas a2200109 4500008004100000245007400041210006900115100002200184700001700206700002100223856010200244 2021 eng d00aA Dimensionality Reduction Approach for Convolutional Neural Networks0 aDimensionality Reduction Approach for Convolutional Neural Netwo1 aMeneghetti, Laura1 aDemo, Nicola1 aRozza, Gianluigi uhttps://math.sissa.it/publication/dimensionality-reduction-approach-convolutional-neural-networks01776nas a2200169 4500008004100000020002200041245009500063210006900158260005200227520110800279100001601387700002101403700002101424700002301445700001901468856011901487 2021 eng d a978-3-030-55874-100aDiscontinuous Galerkin Model Order Reduction of Geometrically Parametrized Stokes Equation0 aDiscontinuous Galerkin Model Order Reduction of Geometrically Pa aChambSpringer International Publishingc2021//3 aThe present work focuses on the geometric parametrization and the reduced order modeling of the Stokes equation. We discuss the concept of a parametrized geometry and its application within a reduced order modeling technique. The full order model is based on the discontinuous Galerkin method with an interior penalty formulation. We introduce the broken Sobolev spaces as well as the weak formulation required for an affine parameter dependency. The operators are transformed from a fixed domain to a parameter dependent domain using the affine parameter dependency. The proper orthogonal decomposition is used to obtain the basis of functions of the reduced order model. By using the Galerkin projection the linear system is projected onto the reduced space. During this process, the offline-online decomposition is used to separate parameter dependent operations from parameter independent operations. Finally this technique is applied to an obstacle test problem.The numerical outcomes presented include experimental error analysis, eigenvalue decay and measurement of online simulation time.

1 aShah, Nirav1 aHess, Martin, W.1 aRozza, Gianluigi1 aVermolen, Fred, J.1 aVuik, Cornelis uhttps://math.sissa.it/publication/discontinuous-galerkin-model-order-reduction-geometrically-parametrized-stokes-000494nas a2200109 4500008004100000245009500041210006900136100002500205700001700230700002100247856011600268 2021 eng d00aA dynamic mode decomposition extension for the forecasting of parametric dynamical systems0 adynamic mode decomposition extension for the forecasting of para1 aAndreuzzi, Francesco1 aDemo, Nicola1 aRozza, Gianluigi uhttps://math.sissa.it/publication/dynamic-mode-decomposition-extension-forecasting-parametric-dynamical-systems02130nas a2200157 4500008004100000245011600041210006900157490000700226520151300233100002001746700002001766700002101786700002101807700002001828856012401848 2021 eng d00aEfficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method0 aEfficient computation of bifurcation diagrams with a deflated ap0 v473 aThe majority of the most common physical phenomena can be described using partial differential equations (PDEs). However, they are very often characterized by strong nonlinearities. Such features lead to the coexistence of multiple solutions studied by the bifurcation theory. Unfortunately, in practical scenarios, one has to exploit numerical methods to compute the solutions of systems of PDEs, even if the classical techniques are usually able to compute only a single solution for any value of a parameter when more branches exist. In this work, we implemented an elaborated deflated continuation method that relies on the spectral element method (SEM) and on the reduced basis (RB) one to efficiently compute bifurcation diagrams with more parameters and more bifurcation points. The deflated continuation method can be obtained combining the classical continuation method and the deflation one: the former is used to entirely track each known branch of the diagram, while the latter is exploited to discover the new ones. Finally, when more than one parameter is considered, the efficiency of the computation is ensured by the fact that the diagrams can be computed during the online phase while, during the offline one, one only has to compute one-dimensional diagrams. In this work, after a more detailed description of the method, we will show the results that can be obtained using it to compute a bifurcation diagram associated with a problem governed by the Navier-Stokes equations.

1 aPintore, Moreno1 aPichi, Federico1 aHess, Martin, W.1 aRozza, Gianluigi1 aCanuto, Claudio uhttps://math.sissa.it/publication/efficient-computation-bifurcation-diagrams-deflated-approach-reduced-basis-spectral-001866nas a2200169 4500008004100000245014800041210006900189300001200258490000700270520119600277100001701473700001901490700002101509700002101530700002201551856012301573 2021 eng d00aAn efficient computational framework for naval shape design and optimization problems by means of data-driven reduced order modeling techniques0 aefficient computational framework for naval shape design and opt a211-2300 v143 aThis contribution describes the implementation of a data-driven shape optimization pipeline in a naval architecture application. We adopt reduced order models in order to improve the efficiency of the overall optimization, keeping a modular and equation-free nature to target the industrial demand. We applied the above mentioned pipeline to a realistic cruise ship in order to reduce the total drag. We begin by defining the design space, generated by deforming an initial shape in a parametric way using free form deformation. The evaluation of the performance of each new hull is determined by simulating the flux via finite volume discretization of a two-phase (water and air) fluid. Since the fluid dynamics model can result very expensive—especially dealing with complex industrial geometries—we propose also a dynamic mode decomposition enhancement to reduce the computational cost of a single numerical simulation. The real-time computation is finally achieved by means of proper orthogonal decomposition with Gaussian process regression technique. Thanks to the quick approximation, a genetic optimization algorithm becomes feasible to converge towards the optimal shape.

1 aDemo, Nicola1 aOrtali, Giulio1 aGustin, Gianluca1 aRozza, Gianluigi1 aLavini, Gianpiero uhttps://math.sissa.it/publication/efficient-computational-framework-naval-shape-design-and-optimization-problems-means00519nas a2200109 4500008004100000245011200041210006900153100001700222700002200239700002100261856012700282 2021 eng d00aAN EXTENDED PHYSICS INFORMED NEURAL NETWORK FOR PRELIMINARY ANALYSIS OF PARAMETRIC OPTIMAL CONTROL PROBLEMS0 aEXTENDED PHYSICS INFORMED NEURAL NETWORK FOR PRELIMINARY ANALYSI1 aDemo, Nicola1 aStrazzullo, Maria1 aRozza, Gianluigi uhttps://math.sissa.it/publication/extended-physics-informed-neural-network-preliminary-analysis-parametric-optimal-control01261nas a2200157 4500008004100000245008800041210006900129300001200198490000700210520069300217100002200910700001700932700002000949700002100969856011300990 2021 eng d00aHierarchical model reduction techniques for flow modeling in a parametrized setting0 aHierarchical model reduction techniques for flow modeling in a p a267-2930 v193 aIn this work we focus on two different methods to deal with parametrized partial differential equations in an efficient and accurate way. Starting from high fidelity approximations built via the hierarchical model reduction discretization, we consider two approaches, both based on a projection model reduction technique. The two methods differ for the algorithm employed during the construction of the reduced basis. In particular, the former employs the proper orthogonal decomposition, while the latter relies on a greedy algorithm according to the certified reduced basis technique. The two approaches are preliminarily compared on two-dimensional scalar and vector test cases.

1 aZancanaro, Matteo1 aBallarin, F.1 aPerotto, Simona1 aRozza, Gianluigi uhttps://math.sissa.it/publication/hierarchical-model-reduction-techniques-flow-modeling-parametrized-setting01664nas a2200169 4500008004100000022001400041245011000055210006900165300000800234490000600242520112900248100001701377700001901394700001701413700002101430856004301451 2021 eng d a2077-131200aHull Shape Design Optimization with Parameter Space and Model Reductions, and Self-Learning Mesh Morphing0 aHull Shape Design Optimization with Parameter Space and Model Re a1850 v93 aIn the field of parametric partial differential equations, shape optimization represents a challenging problem due to the required computational resources. In this contribution, a data-driven framework involving multiple reduction techniques is proposed to reduce such computational burden. Proper orthogonal decomposition (POD) and active subspace genetic algorithm (ASGA) are applied for a dimensional reduction of the original (high fidelity) model and for an efficient genetic optimization based on active subspace property. The parameterization of the shape is applied directly to the computational mesh, propagating the generic deformation map applied to the surface (of the object to optimize) to the mesh nodes using a radial basis function (RBF) interpolation. Thus, topology and quality of the original mesh are preserved, enabling application of POD-based reduced order modeling techniques, and avoiding the necessity of additional meshing steps. Model order reduction is performed coupling POD and Gaussian process regression (GPR) in a data-driven fashion. The framework is validated on a benchmark ship.

1 aDemo, Nicola1 aTezzele, Marco1 aMola, Andrea1 aRozza, Gianluigi uhttps://www.mdpi.com/2077-1312/9/2/18500548nas a2200169 4500008004100000245009600041210006900137260001200206300000800218490000600226100002200232700001900254700002200273700002000295700002100315856004200336 2021 eng d00aHybrid Neural Network Reduced Order Modelling for Turbulent Flows with Geometric Parameters0 aHybrid Neural Network Reduced Order Modelling for Turbulent Flow bMDPI AG a2960 v61 aZancanaro, Matteo1 aMrosek, Markus1 aStabile, Giovanni1 aOthmer, Carsten1 aRozza, Gianluigi uhttps://doi.org/10.3390/fluids608029600488nas a2200109 4500008004100000245009000041210006900131100002100200700001900221700002100240856011700261 2021 eng d00aA local approach to parameter space reduction for regression and classification tasks0 alocal approach to parameter space reduction for regression and c1 aRomor, Francesco1 aTezzele, Marco1 aRozza, Gianluigi uhttps://math.sissa.it/publication/local-approach-parameter-space-reduction-regression-and-classification-tasks-001334nas a2200157 4500008004100000022001400041245010000055210007100155300000800226490000600234520083600240100001901076700001701095700002101112856004301133 2021 eng d a2311-552100aA Monolithic and a Partitioned, Reduced Basis Method for Fluid–Structure Interaction Problems0 aMonolithic and a Partitioned Reduced Basis Method for Fluid–Stru a2290 v63 aThe aim of this work is to present an overview about the combination of the Reduced Basis Method (RBM) with two different approaches for Fluid–Structure Interaction (FSI) problems, namely a monolithic and a partitioned approach. We provide the details of implementation of two reduction procedures, and we then apply them to the same test case of interest. We first implement a reduction technique that is based on a monolithic procedure where we solve the fluid and the solid problems all at once. We then present another reduction technique that is based on a partitioned (or segregated) procedure: the fluid and the solid problems are solved separately and then coupled using a fixed point strategy. The toy problem that we consider is based on the Turek–Hron benchmark test case, with a fluid Reynolds number Re=100.

1 aNonino, Monica1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.mdpi.com/2311-5521/6/6/22900594nas a2200133 4500008004100000245013200041210006900173260002500242490000700267100002100274700001900295700002100314856012500335 2021 eng d00aMulti-fidelity data fusion for the approximation of scalar functions with low intrinsic dimensionality through active subspaces0 aMultifidelity data fusion for the approximation of scalar functi bWiley Online Library0 v201 aRomor, Francesco1 aTezzele, Marco1 aRozza, Gianluigi uhttps://math.sissa.it/publication/multi-fidelity-data-fusion-approximation-scalar-functions-low-intrinsic-dimensionality00576nas a2200133 4500008004100000245010900041210006900150100002100219700001900240700001900259700002000278700002100298856012300319 2021 eng d00aMulti-fidelity data fusion through parameter space reduction with applications to automotive engineering0 aMultifidelity data fusion through parameter space reduction with1 aRomor, Francesco1 aTezzele, Marco1 aMrosek, Markus1 aOthmer, Carsten1 aRozza, Gianluigi uhttps://math.sissa.it/publication/multi-fidelity-data-fusion-through-parameter-space-reduction-applications-automotive00613nas a2200133 4500008004100000245014100041210006900182100002200251700001700273700002300290700002200313700002100335856012300356 2021 eng d00aThe Neural Network shifted-Proper Orthogonal Decomposition: a Machine Learning Approach for Non-linear Reduction of Hyperbolic Equations0 aNeural Network shiftedProper Orthogonal Decomposition a Machine 1 aPapapicco, Davide1 aDemo, Nicola1 aGirfoglio, Michele1 aStabile, Giovanni1 aRozza, Gianluigi uhttps://math.sissa.it/publication/neural-network-shifted-proper-orthogonal-decomposition-machine-learning-approach-non00746nas a2200217 4500008004100000245007000041210006800111300001600179490000700195100002300202700002400225700002400249700002400273700002300297700002100320700002100341700002200362700002000384700002400404856010000428 2021 eng d00aNon-intrusive data-driven ROM framework for hemodynamics problems0 aNonintrusive datadriven ROM framework for hemodynamics problems a1183–11910 v371 aGirfoglio, Michele1 aScandurra, Leonardo1 aBallarin, Francesco1 aInfantino, Giuseppe1 aNicolò, Francesca1 aMontalto, Andrea1 aRozza, Gianluigi1 aScrofani, Roberto1 aComisso, Marina1 aMusumeci, Francesco uhttps://math.sissa.it/publication/non-intrusive-data-driven-rom-framework-hemodynamics-problems01915nas a2200181 4500008004100000245014700041210006900188260002500257300001200282490000700294520120500301100001701506700002201523700002301545700002101568700002001589856012401609 2021 eng d00aA novel iterative penalty method to enforce boundary conditions in Finite Volume POD-Galerkin reduced order models for fluid dynamics problems0 anovel iterative penalty method to enforce boundary conditions in bGlobal Science Press a34–660 v303 aA Finite-Volume based POD-Galerkin reduced order model is developed for fluid dynamic problems where the (time-dependent) boundary conditions are controlled using two different boundary control strategies: the control function method, whose aim is to obtain homogeneous basis functions for the reduced basis space and the penalty method where the boundary conditions are enforced in the reduced order model using a penalty factor. The penalty method is improved by using an iterative solver for the determination of the penalty factor rather than tuning the factor with a sensitivity analysis or numerical experimentation. The boundary control methods are compared and tested for two cases: the classical lid driven cavity benchmark problem and a Y-junction flow case with two inlet channels and one outlet channel. The results show that the boundaries of the reduced order model can be controlled with the boundary control methods and the same order of accuracy is achieved for the velocity and pressure fields. Finally, the speedup ratio between the reduced order models and the full order model is of the order 1000 for the lid driven cavity case and of the order 100 for the Y-junction test case.1 aStar, Kelbij1 aStabile, Giovanni1 aBelloni, Francesco1 aRozza, Gianluigi1 aDegroote, Joris uhttps://math.sissa.it/publication/novel-iterative-penalty-method-enforce-boundary-conditions-finite-volume-pod-galerkin00579nas a2200169 4500008004100000245011300041210006900154260001000223300001600233490000800249100002700257700002100284700002400305700002100329700002200350856003700372 2021 eng d00aA numerical approach for heat flux estimation in thin slabs continuous casting molds using data assimilation0 anumerical approach for heat flux estimation in thin slabs contin bWiley a4541–45740 v1221 aMorelli, Umberto, Emil1 aBarral, Patricia1 aQuintela, Peregrina1 aRozza, Gianluigi1 aStabile, Giovanni uhttps://doi.org/10.1002/nme.671301539nas a2200133 4500008004100000245006800041210006500109490000800174520100800182100002301190700002101213700002101234856015001255 2021 eng d00aA POD-Galerkin reduced order model for a LES filtering approach0 aPODGalerkin reduced order model for a LES filtering approach0 v4363 aWe propose a Proper Orthogonal Decomposition (POD)-Galerkin based Reduced Order Model (ROM) for an implementation of the Leray model that combines a two-step algorithm called Evolve-Filter (EF) with a computationally efficient finite volume method. The main novelty of the proposed approach relies in applying spatial filtering both for the collection of the snapshots and in the reduced order model, as well as in considering the pressure field at reduced level. In both steps of the EF algorithm, velocity and pressure fields are approximated by using different POD basis and coefficients. For the reconstruction of the pressures fields, we use a pressure Poisson equation approach. We test our ROM on two benchmark problems: 2D and 3D unsteady flow past a cylinder at Reynolds number 0≤Re≤100. The accuracy of the reduced order model is assessed against results obtained with the full order model. For the 2D case, a parametric study with respect to the filtering radius is also presented.

1 aGirfoglio, Michele1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85102138957&doi=10.1016%2fj.jcp.2021.110260&partnerID=40&md5=73115708267e80754f343561c26f474402160nas a2200157 4500008004100000245011600041210006900157300001200226490000700238520155800245100001701803700002201820700002101842700002001863856011901883 2021 eng d00aA POD-Galerkin reduced order model of a turbulent convective buoyant flow of sodium over a backward-facing step0 aPODGalerkin reduced order model of a turbulent convective buoyan a486-5030 v893 aA Finite-Volume based POD-Galerkin reduced order modeling strategy for steady-state Reynolds averaged Navier–Stokes (RANS) simulation is extended for low-Prandtl number flow. The reduced order model is based on a full order model for which the effects of buoyancy on the flow and heat transfer are characterized by varying the Richardson number. The Reynolds stresses are computed with a linear eddy viscosity model. A single gradient diffusion hypothesis, together with a local correlation for the evaluation of the turbulent Prandtl number, is used to model the turbulent heat fluxes. The contribution of the eddy viscosity and turbulent thermal diffusivity fields are considered in the reduced order model with an interpolation based data-driven method. The reduced order model is tested for buoyancy-aided turbulent liquid sodium flow over a vertical backward-facing step with a uniform heat flux applied on the wall downstream of the step. The wall heat flux is incorporated with a Neumann boundary condition in both the full order model and the reduced order model. The velocity and temperature profiles predicted with the reduced order model for the same and new Richardson numbers inside the range of parameter values are in good agreement with the RANS simulations. Also, the local Stanton number and skin friction distribution at the heated wall are qualitatively well captured. Finally, the reduced order simulations, performed on a single core, are about 105 times faster than the RANS simulations that are performed on eight cores.

1 aStar, Kelbij1 aStabile, Giovanni1 aRozza, Gianluigi1 aDegroote, Joris uhttps://math.sissa.it/publication/pod-galerkin-reduced-order-model-turbulent-convective-buoyant-flow-sodium-over-001170nas a2200229 4500008004100000022001400041245003900055210003800094300001100132490000600143520051100149653002600660653002500686653003100711653001100742653004100753100001900794700001700813700001700830700002100847856007200868 2021 eng d a2665-963800aPyGeM: Python Geometrical Morphing0 aPyGeM Python Geometrical Morphing a1000470 v73 aPyGeM is an open source Python package which allows to easily parametrize and deform 3D object described by CAD files or 3D meshes. It implements several morphing techniques such as free form deformation, radial basis function interpolation, and inverse distance weighting. Due to its versatility in dealing with different file formats it is particularly suited for researchers and practitioners both in academia and in industry interested in computational engineering simulations and optimization studies.10aFree form deformation10aGeometrical morphing10aInverse distance weighting10aPython10aRadial basis functions interpolation1 aTezzele, Marco1 aDemo, Nicola1 aMola, Andrea1 aRozza, Gianluigi uhttps://math.sissa.it/publication/pygem-python-geometrical-morphing01746nas a2200217 4500008004100000020001400041245012200055210006900177260001600246520096600262653003001228653003001258653004101288653002501329653001801354100002701372700001901399700001701418700002101435856007201456 2021 eng d a0898-122100aA Reduced Order Cut Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems0 aReduced Order Cut Finite Element method for geometrically parame c2021/08/12/3 aWe focus on steady and unsteady Navier–Stokes flow systems in a reduced-order modeling framework based on Proper Orthogonal Decomposition within a levelset geometry description and discretized by an unfitted mesh Finite Element Method. This work extends the approaches of [1], [2], [3] to nonlinear CutFEM discretization. We construct and investigate a unified and geometry independent reduced basis which overcomes many barriers and complications of the past, that may occur whenever geometrical morphings are taking place. By employing a geometry independent reduced basis, we are able to avoid remeshing and transformation to reference configurations, and we are able to handle complex geometries. This combination of a fixed background mesh in a fixed extended background geometry with reduced order techniques appears beneficial and advantageous in many industrial and engineering applications, which could not be resolved efficiently in the past.

10aCut Finite Element Method10aNavier–Stokes equations10aParameter–dependent shape geometry10aReduced Order Models10aUnfitted mesh1 aKaratzas, Efthymios, N1 aNonino, Monica1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.sciencedirect.com/science/article/pii/S089812212100279000618nas a2200169 4500008004100000020002200041245016600063210006900229260001300298300001400311490000800325100002200333700001800355700001700373700002100390856003700411 2021 eng d a978-3-030-55873-400aReduced Order Methods for Parametrized Non-linear and Time Dependent Optimal Flow Control Problems, Towards Applications in Biomedical and Environmental Sciences0 aReduced Order Methods for Parametrized Nonlinear and Time Depend bSpringer a841–8500 v1391 aStrazzullo, Maria1 aZainib, Zakia1 aBallarin, F.1 aRozza, Gianluigi uhttps://arxiv.org/abs/1912.0788601664nas a2200181 4500008004100000020002200041245016600063210006900229260005200298520089600350100002201246700001801268700001701286700002101303700002201324700001901346856011701365 2021 eng d a978-3-030-55874-100aReduced Order Methods for Parametrized Non-linear and Time Dependent Optimal Flow Control Problems, Towards Applications in Biomedical and Environmental Sciences0 aReduced Order Methods for Parametrized Nonlinear and Time Depend aChambSpringer International Publishingc2021//3 aWe introduce reduced order methods as an efficient strategy to solve parametrized non-linear and time dependent optimal flow control problems governed by partial differential equations. Indeed, the optimal control problems require a huge computational effort in order to be solved, most of all in physical and/or geometrical parametrized settings. Reduced order methods are a reliable and suitable approach, increasingly gaining popularity, to achieve rapid and accurate optimal solutions in several fields, such as in biomedical and environmental sciences. In this work, we employ a POD-Galerkin reduction approach over a parametrized optimality system, derived from the Karush-Kuhn-Tucker conditions. The methodology presented is tested on two boundary control problems, governed respectively by (1) time dependent Stokes equations and (2) steady non-linear Navier-Stokes equations.

1 aStrazzullo, Maria1 aZainib, Zakia1 aBallarin, F.1 aRozza, Gianluigi1 aVermolen, Fred, J1 aVuik, Cornelis uhttps://www.springerprofessional.de/en/reduced-order-methods-for-parametrized-non-linear-and-time-depen/1912267600588nas a2200169 4500008004100000245013500041210006900176260001000245300001600255490000700271100001700278700002300295700002200318700002100340700002000361856003700381 2021 eng d00aReduced order models for the incompressible Navier-Stokes equations on collocated grids using a `discretize-then-project' approach0 aReduced order models for the incompressible NavierStokes equatio bWiley a2694–27220 v931 aStar, Kelbij1 aSanderse, Benjamin1 aStabile, Giovanni1 aRozza, Gianluigi1 aDegroote, Joris uhttps://doi.org/10.1002/fld.499401446nas a2200133 4500008004100000245013900041210006900180490000700249520096200256100001701218700001901235700002101254856003701275 2021 eng d00aA supervised learning approach involving active subspaces for an efficient genetic algorithm in high-dimensional optimization problems0 asupervised learning approach involving active subspaces for an e0 v433 aIn this work, we present an extension of the genetic algorithm (GA) which exploits the active subspaces (AS) property to evolve the individuals on a lower dimensional space. In many cases, GA requires in fact more function evaluations than others optimization method to converge to the optimum. Thus, complex and high-dimensional functions may result intractable with the standard algorithm. To address this issue, we propose to linearly map the input parameter space of the original function onto its AS before the evolution, performing the mutation and mate processes in a lower dimensional space. In this contribution, we describe the novel method called ASGA, presenting differences and similarities with the standard GA method. We test the proposed method over n-dimensional benchmark functions – Rosenbrock, Ackley, Bohachevsky, Rastrigin, Schaffer N. 7, and Zakharov – and finally we apply it to an aeronautical shape optimization problem.

1 aDemo, Nicola1 aTezzele, Marco1 aRozza, Gianluigi uhttps://arxiv.org/abs/2006.0728200698nas a2200157 4500008004100000245015800041210006900199300001200268490000800280100001500288700002200303700002400325700002100349700001800370856015200388 2021 eng d00aA weighted POD-reduction approach for parametrized PDE-constrained optimal control problems with random inputs and applications to environmental sciences0 aweighted PODreduction approach for parametrized PDEconstrained o a261-2760 v1021 aCarere, G.1 aStrazzullo, Maria1 aBallarin, Francesco1 aRozza, Gianluigi1 aStevenson, R. uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85117948561&doi=10.1016%2fj.camwa.2021.10.020&partnerID=40&md5=cb57d59a6975a35315b2cf5d0e3a600101497nas a2200169 4500008004100000245010500041210006900146520085900215100002101074700001601095700001701111700001901128700002301147700002201170700001701192856011801209 2020 eng d00aAdvances in reduced order methods for parametric industrial problems in computational fluid dynamics0 aAdvances in reduced order methods for parametric industrial prob3 aReduced order modeling has gained considerable attention in recent decades owing to the advantages offered in reduced computational times and multiple solutions for parametric problems. The focus of this manuscript is the application of model order reduction techniques in various engineering and scientific applications including but not limited to mechanical, naval and aeronautical engineering. The focus here is kept limited to computational fluid mechanics and related applications. The advances in the reduced order modeling with proper orthogonal decomposition and reduced basis method are presented as well as a brief discussion of dynamic mode decomposition and also some present advances in the parameter space reduction. Here, an overview of the challenges faced and possible solutions are presented with examples from various problems.

1 aRozza, Gianluigi1 aMalik, M.H.1 aDemo, Nicola1 aTezzele, Marco1 aGirfoglio, Michele1 aStabile, Giovanni1 aMola, Andrea uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075395686&partnerID=40&md5=fb0b1a3cfdfd35a104db9921bc9be67500632nas a2200169 4500008004100000020001800041245010800059210006900167260003100236300001100267100002100278700002100299700002200320700001900342700001700361856008400378 2020 eng d a978311067149000aBasic ideas and tools for projection-based model reduction of parametric partial differential equations0 aBasic ideas and tools for projectionbased model reduction of par aBerlin, BostonbDe Gruyter a1 - 471 aRozza, Gianluigi1 aHess, Martin, W.1 aStabile, Giovanni1 aTezzele, Marco1 aBallarin, F. uhttps://www.degruyter.com/view/book/9783110671490/10.1515/9783110671490-001.xml01430nas a2200169 4500008004100000245011100041210006900152300001200221490000700233520077800240100001701018700001801035700001701053700001701070700002101087856015201108 2020 eng d00aCertified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height0 aCertified Reduced Basis VMSSmagorinsky model for natural convect a973-9890 v803 aIn this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.

1 aBallarin, F.1 aRebollo, T.C.1 aÁvila, E.D.1 aMarmol, M.G.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85085843368&doi=10.1016%2fj.camwa.2020.05.013&partnerID=40&md5=7c6596865ec89651319c7dd97159dd7701178nas a2200157 4500008004100000245006900041210006700110300001100177490000800188520070800196100001900904700002200923700001700945700002100962856003700983 2020 eng d00aData-driven POD-Galerkin reduced order model for turbulent flows0 aDatadriven PODGalerkin reduced order model for turbulent flows a1095130 v4163 aIn this work we present a Reduced Order Model which is specifically designed to deal with turbulent flows in a finite volume setting. The method used to build the reduced order model is based on the idea of merging/combining projection-based techniques with data-driven reduction strategies. In particular, the work presents a mixed strategy that exploits a data-driven reduction method to approximate the eddy viscosity solution manifold and a classical POD-Galerkin projection approach for the velocity and the pressure fields, respectively. The newly proposed reduced order model has been validated on benchmark test cases in both steady and unsteady settings with Reynolds up to $Re=O(10^5)$.

1 aHijazi, Saddam1 aStabile, Giovanni1 aMola, Andrea1 aRozza, Gianluigi uhttps://arxiv.org/abs/1907.0990902133nas a2200145 4500008004100000245011600041210006900157520162200226100002001848700002001868700002101888700002101909700002001930856003701950 2020 eng d00aEfficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method0 aEfficient computation of bifurcation diagrams with a deflated ap3 aThe majority of the most common physical phenomena can be described using partial differential equations (PDEs). However, they are very often characterized by strong nonlinearities. Such features lead to the coexistence of multiple solutions studied by the bifurcation theory. Unfortunately, in practical scenarios, one has to exploit numerical methods to compute the solutions of systems of PDEs, even if the classical techniques are usually able to compute only a single solution for any value of a parameter when more branches exist. In this work we implemented an elaborated deflated continuation method, that relies on the spectral element method (SEM) and on the reduced basis (RB) one, to efficiently compute bifurcation diagrams with more parameters and more bifurcation points. The deflated continuation method can be obtained combining the classical continuation method and the deflation one: the former is used to entirely track each known branch of the diagram, while the latter is exploited to discover the new ones. Finally, when more than one parameter is considered, the efficiency of the computation is ensured by the fact that the diagrams can be computed during the online phase while, during the offline one, one only has to compute one-dimensional diagrams. In this work, after a more detailed description of the method, we will show the results that can be obtained using it to compute a bifurcation diagram associated with a problem governed by the Navier-Stokes equations.

1 aPintore, Moreno1 aPichi, Federico1 aHess, Martin, W.1 aRozza, Gianluigi1 aCanuto, Claudio uhttps://arxiv.org/abs/1912.0608901597nas a2200145 4500008004100000245008800041210006900129300001400198490000800212520112900220100002201349700002201371700002101393856003701414 2020 eng d00aEfficient Geometrical parametrization for finite-volume based reduced order methods0 aEfficient Geometrical parametrization for finitevolume based red a2655-26820 v1213 aIn this work, we present an approach for the efficient treatment of parametrized geometries in the context of POD-Galerkin reduced order methods based on Finite Volume full order approximations. On the contrary to what is normally done in the framework of finite element reduced order methods, different geometries are not mapped to a common reference domain: the method relies on basis functions defined on an average deformed configuration and makes use of the Discrete Empirical Interpolation Method (D-EIM) to handle together non-affinity of the parametrization and non-linearities. In the first numerical example, different mesh motion strategies, based on a Laplacian smoothing technique and on a Radial Basis Function approach, are analyzed and compared on a heat transfer problem. Particular attention is devoted to the role of the non-orthogonal correction. In the second numerical example the methodology is tested on a geometrically parametrized incompressible Navier–Stokes problem. In this case, the reduced order model is constructed following the same segregated approach used at the full order level

1 aStabile, Giovanni1 aZancanaro, Matteo1 aRozza, Gianluigi uhttps://arxiv.org/abs/1901.0637301667nas a2200181 4500008004100000020002200041245012000063210006900183260004400252300001400296520095800310100001901268700001701287700002201304700001701326700002101343856012101364 2020 eng d a978-3-030-30705-900aThe Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: from Laminar to Turbulent Flows0 aEffort of Increasing Reynolds Number in ProjectionBased Reduced aChambSpringer International Publishing a245–2643 aWe present in this double contribution two different reduced order strategies for incompressible parameterized Navier-Stokes equations characterized by varying Reynolds numbers. The first strategy deals with low Reynolds number (laminar flow) and is based on a stabilized finite element method during the offline stage followed by a Galerkin projection on reduced basis spaces generated by a greedy algorithm. The second methodology is based on a full order finite volume discretization. The latter methodology will be used for flows with moderate to high Reynolds number characterized by turbulent patterns. For the treatment of the mentioned turbulent flows at the reduced order level, a new POD-Galerkin approach is proposed. The new approach takes into consideration the contribution of the eddy viscosity also during the online stage and is based on the use of interpolation. The two methodologies are tested on classic benchmark test cases.

1 aHijazi, Saddam1 aAli, Shafqat1 aStabile, Giovanni1 aBallarin, F.1 aRozza, Gianluigi uhttps://math.sissa.it/publication/effort-increasing-reynolds-number-projection-based-reduced-order-methods-laminar-001480nas a2200157 4500008004100000245009400041210006900135490000600204520097900210100001901189700001701208700002201225700001701247700002101264856003701285 2020 eng d00aEnhancing CFD predictions in shape design problems by model and parameter space reduction0 aEnhancing CFD predictions in shape design problems by model and 0 v73 aIn this work we present an advanced computational pipeline for the approximation and prediction of the lift coefficient of a parametrized airfoil profile. The non-intrusive reduced order method is based on dynamic mode decomposition (DMD) and it is coupled with dynamic active subspaces (DyAS) to enhance the future state prediction of the target function and reduce the parameter space dimensionality. The pipeline is based on high-fidelity simulations carried out by the application of finite volume method for turbulent flows, and automatic mesh morphing through radial basis functions interpolation technique. The proposed pipeline is able to save 1/3 of the overall computational resources thanks to the application of DMD. Moreover exploiting DyAS and performing the regression on a lower dimensional space results in the reduction of the relative error in the approximation of the time-varying lift coefficient by a factor 2 with respect to using only the DMD.

1 aTezzele, Marco1 aDemo, Nicola1 aStabile, Giovanni1 aMola, Andrea1 aRozza, Gianluigi uhttps://arxiv.org/abs/2001.0523701487nas a2200169 4500008004100000245008100041210006900122300001100191490000800202520096400210100002301174700002201197700001701219700002101236700002301257856003701280 2020 eng d00aA hybrid reduced order method for modelling turbulent heat transfer problems0 ahybrid reduced order method for modelling turbulent heat transfe a1046150 v2083 aA parametric, hybrid reduced order model approach based on the Proper Orthogonal Decomposition with both Galerkin projection and interpolation based on Radial Basis Functions method is presented. This method is tested against a case of turbulent non-isothermal mixing in a T-junction pipe, a common ow arrangement found in nuclear reactor cooling systems. The reduced order model is derived from the 3D unsteady, incompressible Navier-Stokes equations weakly coupled with the energy equation. For high Reynolds numbers, the eddy viscosity and eddy diffusivity are incorporated into the reduced order model with a Proper Orthogonal Decomposition (nested and standard) with Interpolation (PODI), where the interpolation is performed using Radial Basis Functions. The reduced order solver, obtained using a k-ω SST URANS full order model, is tested against the full order solver in a 3D T-junction pipe with parametric velocity inlet boundary conditions.

1 aGeorgaka, Sokratia1 aStabile, Giovanni1 aStar, Kelbij1 aRozza, Gianluigi1 aBluck, Michael, J. uhttps://arxiv.org/abs/1906.0872500549nam a2200121 4500008004100000245011400041210006900155100002100224700001900245700001800264700002100282856012400303 2020 eng d00aKernel-based Active Subspaces with application to CFD parametric problems using Discontinuous Galerkin method0 aKernelbased Active Subspaces with application to CFD parametric 1 aRomor, Francesco1 aTezzele, Marco1 aLario, Andrea1 aRozza, Gianluigi uhttps://math.sissa.it/publication/kernel-based-active-subspaces-application-cfd-parametric-problems-using-discontinuous00540nas a2200145 4500008004100000245010800041210006900149653002100218653003300239100002100272700002100293700002200314700002100336856003700357 2020 eng d00aMicroROM: An Efficient and Accurate Reduced Order Method to Solve Many-Query Problems in Micro-Motility0 aMicroROM An Efficient and Accurate Reduced Order Method to Solve10aFOS: Mathematics10aNumerical Analysis (math.NA)1 aGiuliani, Nicola1 aHess, Martin, W.1 aDeSimone, Antonio1 aRozza, Gianluigi uhttps://arxiv.org/abs/2006.1383601405nas a2200169 4500008004100000020002200041245014800063210006900211260004400280300001400324520076900338100001901107700002201126700001701148700002101165856004901186 2020 eng d a978-3-030-48721-800aNon-intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: A Comparison and Perspectives0 aNonintrusive Polynomial Chaos Method Applied to FullOrder and Re aChambSpringer International Publishing a217–2403 aIn this work, Uncertainty Quantification (UQ) based on non-intrusive Polynomial Chaos Expansion (PCE) is applied to the CFD problem of the flow past an airfoil with parameterized angle of attack and inflow velocity. To limit the computational cost associated with each of the simulations required by the non-intrusive UQ algorithm used, we resort to a Reduced Order Model (ROM) based on Proper Orthogonal Decomposition (POD)-Galerkin approach. A first set of results is presented to characterize the accuracy of the POD-Galerkin ROM developed approach with respect to the Full Order Model (FOM) solver (OpenFOAM). A further analysis is then presented to assess how the UQ results are affected by substituting the FOM predictions with the surrogate ROM ones.

1 aHijazi, Saddam1 aStabile, Giovanni1 aMola, Andrea1 aRozza, Gianluigi uhttps://doi.org/10.1007/978-3-030-48721-8_1001629nas a2200121 4500008004100000245014500041210006900186520106800255100002201323700001701345700002101362856012401383 2020 eng d00aPOD-Galerkin Model Order Reduction for Parametrized Nonlinear Time Dependent Optimal Flow Control: an Application to Shallow Water Equations0 aPODGalerkin Model Order Reduction for Parametrized Nonlinear Tim3 aIn this work we propose reduced order methods as a reliable strategy to efficiently solve parametrized optimal control problems governed by shallow waters equations in a solution tracking setting. The physical parametrized model we deal with is nonlinear and time dependent: this leads to very time consuming simulations which can be unbearable e.g. in a marine environmental monitoring plan application. Our aim is to show how reduced order modelling could help in studying different configurations and phenomena in a fast way. After building the optimality system, we rely on a POD-Galerkin reduction in order to solve the optimal control problem in a low dimensional reduced space. The presented theoretical framework is actually suited to general nonlinear time dependent optimal control problems. The proposed methodology is finally tested with a numerical experiment: the reduced optimal control problem governed by shallow waters equations reproduces the desired velocity and height profiles faster than the standard model, still remaining accurate.

1 aStrazzullo, Maria1 aBallarin, F.1 aRozza, Gianluigi uhttps://math.sissa.it/publication/pod-galerkin-model-order-reduction-parametrized-nonlinear-time-dependent-optimal-flow01835nas a2200133 4500008004100000245014300041210007100184490000700255520124500262100002201507700001701529700002101546856013401567 2020 eng d00aPOD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation0 aPOD–Galerkin Model Order Reduction for Parametrized Time Depende0 v833 aIn this work we deal with parametrized time dependent optimal control problems governed by partial differential equations. We aim at extending the standard saddle point framework of steady constraints to time dependent cases. We provide an analysis of the well-posedness of this formulation both for parametrized scalar parabolic constraint and Stokes governing equations and we propose reduced order methods as an effective strategy to solve them. Indeed, on one hand, parametrized time dependent optimal control is a very powerful mathematical model which is able to describe several physical phenomena, on the other, it requires a huge computational effort. Reduced order methods are a suitable approach to have rapid and accurate simulations. We rely on POD–Galerkin reduction over the physical and geometrical parameters of the optimality system in a space-time formulation. Our theoretical results and our methodology are tested on two examples: a boundary time dependent optimal control for a Graetz flow and a distributed optimal control governed by time dependent Stokes equations. With these two test cases the convenience of the reduced order modelling is further extended to the field of time dependent optimal control.

1 aStrazzullo, Maria1 aBallarin, F.1 aRozza, Gianluigi uhttps://math.sissa.it/publication/pod%E2%80%93galerkin-model-order-reduction-parametrized-time-dependent-linear-quadratic-optimal01696nas a2200157 4500008004100000245012100041210007300162300001200235490000700247520104800254100001401302700002201316700002101338700002701359856015201386 2020 eng d00aPOD–Galerkin reduced order methods for combined Navier–Stokes transport equations based on a hybrid FV-FE solver0 aPOD–Galerkin reduced order methods for combined Navier–Stokes tr a256-2730 v793 aThe purpose of this work is to introduce a novel POD–Galerkin strategy for the semi-implicit hybrid high order finite volume/finite element solver introduced in Bermúdez et al. (2014) and Busto et al. (2018). The interest is into the incompressible Navier–Stokes equations coupled with an additional transport equation. The full order model employed in this article makes use of staggered meshes. This feature will be conveyed to the reduced order model leading to the definition of reduced basis spaces in both meshes. The reduced order model presented herein accounts for velocity, pressure, and a transport-related variable. The pressure term at both the full order and the reduced order level is reconstructed making use of a projection method. More precisely, a Poisson equation for pressure is considered within the reduced order model. Results are verified against three-dimensional manufactured test cases. Moreover a modified version of the classical cavity test benchmark including the transport of a species is analysed.

1 aBusto, S.1 aStabile, Giovanni1 aRozza, Gianluigi1 aVázquez-Cendón, M.E. uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068068567&doi=10.1016%2fj.camwa.2019.06.026&partnerID=40&md5=a8dcce1b53b8ee872d174bbc4c20caa301515nas a2200145 4500008004100000245009800041210006900139300001200208490000700220520092500227100002701152700001701179700002101196856015201217 2020 eng d00aProjection-based reduced order models for a cut finite element method in parametrized domains0 aProjectionbased reduced order models for a cut finite element me a833-8510 v793 aThis work presents a reduced order modeling technique built on a high fidelity embedded mesh finite element method. Such methods, and in particular the CutFEM method, are attractive in the generation of projection-based reduced order models thanks to their capabilities to seamlessly handle large deformations of parametrized domains and in general to handle topological changes. The combination of embedded methods and reduced order models allows us to obtain fast evaluation of parametrized problems, avoiding remeshing as well as the reference domain formulation, often used in the reduced order modeling for boundary fitted finite element formulations. The resulting novel methodology is presented on linear elliptic and Stokes problems, together with several test cases to assess its capability. The role of a proper extension and transport of embedded solutions to a common background is analyzed in detail.

1 aKaratzas, Efthymios, N1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070900852&doi=10.1016%2fj.camwa.2019.08.003&partnerID=40&md5=2d222ab9c7832955d155655d3c93e1b101531nas a2200145 4500008004100000245011100041210006900152300001200221490000700233520104500240100002101285700002101306700002101327856003701348 2020 eng d00aReduced Basis Model Order Reduction for Navier-Stokes equations in domains with walls of varying curvature0 aReduced Basis Model Order Reduction for NavierStokes equations i a119-1260 v343 aWe consider the Navier-Stokes equations in a channel with a narrowing and walls of varying curvature. By applying the empirical interpolation method to generate an affine parameter dependency, the offline-online procedure can be used to compute reduced order solutions for parameter variations. The reduced order space is computed from the steady-state snapshot solutions by a standard POD procedure. The model is discretised with high-order spectral element ansatz functions, resulting in 4752 degrees of freedom. The proposed reduced order model produces accurate approximations of steady-state solutions for a wide range of geometries and kinematic viscosity values. The application that motivated the present study is the onset of asymmetries (i.e., symmetry breaking bifurcation) in blood flow through a regurgitant mitral valve, depending on the Reynolds number and the valve shape. Through our computational study, we found that the critical Reynolds number for the symmetry breaking increases as the wall curvature increases.

1 aHess, Martin, W.1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://arxiv.org/abs/1901.0370801653nas a2200145 4500008004100000245011300041210007100154300001200225490000700237520104600244100002101290700002101311700002101332856015401353 2020 eng d00aReduced basis model order reduction for Navier–Stokes equations in domains with walls of varying curvature0 aReduced basis model order reduction for Navier–Stokes equations a119-1260 v343 aWe consider the Navier–Stokes equations in a channel with a narrowing and walls of varying curvature. By applying the empirical interpolation method to generate an affine parameter dependency, the offline-online procedure can be used to compute reduced order solutions for parameter variations. The reduced-order space is computed from the steady-state snapshot solutions by a standard POD procedure. The model is discretised with high-order spectral element ansatz functions, resulting in 4752 degrees of freedom. The proposed reduced-order model produces accurate approximations of steady-state solutions for a wide range of geometries and kinematic viscosity values. The application that motivated the present study is the onset of asymmetries (i.e. symmetry breaking bifurcation) in blood flow through a regurgitant mitral valve, depending on the Reynolds number and the valve shape. Through our computational study, we found that the critical Reynolds number for the symmetry breaking increases as the wall curvature increases.

1 aHess, Martin, W.1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85085233294&doi=10.1080%2f10618562.2019.1645328&partnerID=40&md5=e2ed8f24c66376cdc8b5485aa400efb001868nas a2200181 4500008004100000245012100041210006900162260003800231520122900269100002701498700002201525700001901547700002401566700002101590700001601611700002201627856003701649 2020 eng d00aA Reduced Order Approach for the Embedded Shifted Boundary FEM and a Heat Exchange System on Parametrized Geometries0 aReduced Order Approach for the Embedded Shifted Boundary FEM and bSpringer International Publishing3 aA model order reduction technique is combined with an embedded boundary finite element method with a POD-Galerkin strategy. The proposed methodology is applied to parametrized heat transfer problems and we rely on a sufficiently refined shape-regular background mesh to account for parametrized geometries. In particular, the employed embedded boundary element method is the Shifted Boundary Method (SBM) recently proposed. This approach is based on the idea of shifting the location of true boundary conditions to a surrogate boundary, with the goal of avoiding cut cells near the boundary of the computational domain. This combination of methodologies has multiple advantages. In the first place, since the Shifted Boundary Method always relies on the same background mesh, there is no need to update the discretized parametric domain. Secondly, we avoid the treatment of cut cell elements, which usually need particular attention. Thirdly, since the whole background mesh is considered in the reduced basis construction, the SBM allows for a smooth transition of the reduced modes across the immersed domain boundary. The performances of the method are verified in two dimensional heat transfer numerical examples.

1 aKaratzas, Efthymios, N1 aStabile, Giovanni1 aAtallah, Nabib1 aScovazzi, Guglielmo1 aRozza, Gianluigi1 aFehr, Jörg1 aHaasdonk, Bernard uhttps://arxiv.org/abs/1807.0775301572nas a2200181 4500008004100000245008200041210006900123300001200192490000800204520090200212100002201114700001701136700001901153700002301172700002201195700002101217856015201238 2020 eng d00aReduced order isogeometric analysis approach for pdes in parametrized domains0 aReduced order isogeometric analysis approach for pdes in paramet a153-1700 v1373 aIn this contribution, we coupled the isogeometric analysis to a reduced order modelling technique in order to provide a computationally efficient solution in parametric domains. In details, we adopt the free-form deformation method to obtain the parametric formulation of the domain and proper orthogonal decomposition with interpolation for the computational reduction of the model. This technique provides a real-time solution for any parameter by combining several solutions, in this case computed using isogeometric analysis on different geometrical configurations of the domain, properly mapped into a reference configuration. We underline that this reduced order model requires only the full-order solutions, making this approach non-intrusive. We present in this work the results of the application of this methodology to a heat conduction problem inside a deformable collector pipe.

1 aGarotta, Fabrizio1 aDemo, Nicola1 aTezzele, Marco1 aCarraturo, Massimo1 aReali, Alessandro1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089615035&doi=10.1007%2f978-3-030-48721-8_7&partnerID=40&md5=7b15836ae65fa28dcfe8733788d7730c02309nas a2200313 4500008004100000020001400041245013100055210006900186260001500255300001000270490000800280520128800288653003401576653002201610653001701632653002101649653002601670653001701696653003301713653003601746653002601782100001801808700001701826700002401843700002001867700002501887700002101912856006201933 2020 eng d a2040-793900aReduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation0 aReduced order methods for parametric optimal flow control in cor c2020/05/27 ae33670 vn/a3 aAbstract Coronary artery bypass grafts (CABG) surgery is an invasive procedure performed to circumvent partial or complete blood flow blockage in coronary artery disease. In this work, we apply a numerical optimal flow control model to patient-specific geometries of CABG, reconstructed from clinical images of real-life surgical cases, in parameterized settings. The aim of these applications is to match known physiological data with numerical hemodynamics corresponding to different scenarios, arisen by tuning some parameters. Such applications are an initial step toward matching patient-specific physiological data in patient-specific vascular geometries as best as possible. Two critical challenges that reportedly arise in such problems are: (a) lack of robust quantification of meaningful boundary conditions required to match known data as best as possible and (b) high computational cost. In this work, we utilize unknown control variables in the optimal flow control problems to take care of the first challenge. Moreover, to address the second challenge, we propose a time-efficient and reliable computational environment for such parameterized problems by projecting them onto a low-dimensional solution manifold through proper orthogonal decomposition-Galerkin.

10acoronary artery bypass grafts10adata assimilation10aflow control10aGalerkin methods10ahemodynamics modeling10aOptimization10apatient-specific simulations10aProper orthogonal decomposition10areduced order methods1 aZainib, Zakia1 aBallarin, F.1 aFremes, Stephen, E.1 aTriverio, Piero1 aJiménez-Juan, Laura1 aRozza, Gianluigi uhttps://onlinelibrary.wiley.com/doi/10.1002/cnm.3367?af=R01537nas a2200121 4500008004100000245011600041210006900157520098400226100002001210700002101230700002101251856014301272 2020 eng d00aA reduced order modeling technique to study bifurcating phenomena: Application to the gross-pitaevskii equation0 areduced order modeling technique to study bifurcating phenomena 3 aWe propose a computationally efficient framework to treat nonlinear partial differential equations having bifurcating solutions as one or more physical control parameters are varied. Our focus is on steady bifurcations. Plotting a bifurcation diagram entails computing multiple solutions of a parametrized, nonlinear problem, which can be extremely expensive in terms of computational time. In order to reduce these demanding computational costs, our approach combines a continuation technique and Newton's method with a reduced order modeling (ROM) technique, suitably supplemented with a hyperreduction method. To demonstrate the effectiveness of our ROM approach, we trace the steady solution branches of a nonlinear Schrödinger equation, called the Gross{Pitaevskii equation, as one or two physical parameters are varied. In the two-parameter study, we show that our approach is 60 times faster in constructing a bifurcation diagram than a standard full order method.

1 aPichi, Federico1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85096768803&doi=10.1137%2f20M1313106&partnerID=40&md5=47d6012d10854c2f9a04b9737f87059201419nas a2200121 4500008004100000245010700041210006900148520098100217100002001198700002101218700002101239856003701260 2020 eng d00aA Reduced Order technique to study bifurcating phenomena: application to the Gross-Pitaevskii equation0 aReduced Order technique to study bifurcating phenomena applicati3 aWe propose a computationally efficient framework to treat nonlinear partial differential equations having bifurcating solutions as one or more physical control parameters are varied. Our focus is on steady bifurcations. Plotting a bifurcation diagram entails computing multiple solutions of a parametrized, nonlinear problem, which can be extremely expensive in terms of computational time. In order to reduce these demanding computational costs, our approach combines a continuation technique and Newton's method with a Reduced Order Modeling (ROM) technique, suitably supplemented with a hyper-reduction method. To demonstrate the effectiveness of our ROM approach, we trace the steady solution branches of a nonlinear Schrödinger equation, called Gross-Pitaevskii equation, as one or two physical parameters are varied. In the two parameter study, we show that our approach is 60 times faster in constructing a bifurcation diagram than a standard Full Order Method.

1 aPichi, Federico1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://arxiv.org/abs/1907.0708201444nas a2200157 4500008004100000245010200041210006900143490000800212520080500220100002701025700002201052700001701074700002401091700002101115856015001136 2020 eng d00aA reduced-order shifted boundary method for parametrized incompressible Navier–Stokes equations0 areducedorder shifted boundary method for parametrized incompress0 v3703 aWe investigate a projection-based reduced order model of the steady incompressible Navier–Stokes equations for moderate Reynolds numbers. In particular, we construct an “embedded” reduced basis space, by applying proper orthogonal decomposition to the Shifted Boundary Method, a high-fidelity embedded method recently developed. We focus on the geometrical parametrization through level-set geometries, using a fixed Cartesian background geometry and the associated mesh. This approach avoids both remeshing and the development of a reference domain formulation, as typically done in fitted mesh finite element formulations. Two-dimensional computational examples for one and three parameter dimensions are presented to validate the convergence and the efficacy of the proposed approach.

1 aKaratzas, Efthymios, N1 aStabile, Giovanni1 aNouveau, Leo1 aScovazzi, Guglielmo1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087886522&doi=10.1016%2fj.cma.2020.113273&partnerID=40&md5=d864e4808190b682ecb1c8b27cda72d800473nas a2200121 4500008004100000245004900041210004900090300001000139490000700149100002000156700002100176856015400197 2020 eng d00aSpecial Issue on Reduced Order Models in CFD0 aSpecial Issue on Reduced Order Models in CFD a91-920 v341 aPerotto, Simona1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084258805&doi=10.1080%2f10618562.2020.1756497&partnerID=40&md5=d9316aad9ba95f244e07379318ebbcba01338nas a2200145 4500008004100000245010000041210007100141300001200212490000800224520076800232100002101000700002101021700002101042856012901063 2020 eng d00aA spectral element reduced basis method for navier–stokes equations with geometric variations0 aspectral element reduced basis method for navier–stokes equation a561-5710 v1343 aWe consider the Navier-Stokes equations in a channel with a narrowing of varying height. The model is discretized with high-order spectral element ansatz functions, resulting in 6372 degrees of freedom. The steady-state snapshot solutions define a reduced order space through a standard POD procedure. The reduced order space allows to accurately and efficiently evaluate the steady-state solutions for different geometries. In particular, we detail different aspects of implementing the reduced order model in combination with a spectral element discretization. It is shown that an expansion in element-wise local degrees of freedom can be combined with a reduced order modelling approach to enhance computational times in parametric many-query scenarios.

1 aHess, Martin, W.1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://math.sissa.it/publication/spectral-element-reduced-basis-method-navier%E2%80%93stokes-equations-geometric-variations01963nas a2200145 4500008004100000245009800041210006900139300001400208490000700222520138100229100001701610700001701627700002101644856015201665 2020 eng d00aStabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations0 aStabilized reduced basis methods for parametrized steady Stokes a2399-24160 v803 aIt is well known in the Reduced Basis approximation of saddle point problems that the Galerkin projection on the reduced space does not guarantee the inf–sup approximation stability even if a stable high fidelity method was used to generate snapshots. For problems in computational fluid dynamics, the lack of inf–sup stability is reflected by the inability to accurately approximate the pressure field. In this context, inf–sup stability is usually recovered through the enrichment of the velocity space with suitable supremizer functions. The main goal of this work is to propose an alternative approach, which relies on the residual based stabilization techniques customarily employed in the Finite Element literature, such as Brezzi–Pitkaranta, Franca–Hughes, streamline upwind Petrov–Galerkin, Galerkin Least Square. In the spirit of offline–online reduced basis computational splitting, two such options are proposed, namely offline-only stabilization and offline–online stabilization. These approaches are then compared to (and combined with) the state of the art supremizer enrichment approach. Numerical results are discussed, highlighting that the proposed methodology allows to obtain smaller reduced basis spaces (i.e., neglecting supremizer enrichment) for which a modified inf–sup stability is still preserved at the reduced order level.

1 aAli, Shafqat1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d00414nas a2200145 4500008004100000245003400041210003300075300000900108490000600117100002100123700001900144700001700163700002100180856006700201 2019 eng d00aBladeX: Python Blade Morphing0 aBladeX Python Blade Morphing a12030 v41 aGadalla, Mahmoud1 aTezzele, Marco1 aMola, Andrea1 aRozza, Gianluigi uhttps://math.sissa.it/publication/bladex-python-blade-morphing02116nas a2200133 4500008004100000245013800041210006900179520154200248100001701790700001901807700001701826700002101843856011801864 2019 eng d00aA complete data-driven framework for the efficient solution of parametric shape design and optimisation in naval engineering problems0 acomplete datadriven framework for the efficient solution of para3 aIn the reduced order modeling (ROM) framework, the solution of a parametric partial differential equation is approximated by combining the high-fidelity solutions of the problem at hand for several properly chosen configurations. Examples of the ROM application, in the naval field, can be found in [31, 24]. Mandatory ingredient for the ROM methods is the relation between the high-fidelity solutions and the parameters. Dealing with geometrical parameters, especially in the industrial context, this relation may be unknown and not trivial (simulations over hand morphed geometries) or very complex (high number of parameters or many nested morphing techniques). To overcome these scenarios, we propose in this contribution an efficient and complete data-driven framework involving ROM techniques for shape design and optimization, extending the pipeline presented in [7]. By applying the singular value decomposition (SVD) to the points coordinates defining the hull geometry — assuming the topology is inaltered by the deformation —, we are able to compute the optimal space which the deformed geometries belong to, hence using the modal coefficients as the new parameters we can reconstruct the parametric formulation of the domain. Finally the output of interest is approximated using the proper orthogonal decomposition with interpolation technique. To conclude, we apply this framework to a naval shape design problem where the bulbous bow is morphed to reduce the total resistance of the ship advancing in calm water.

1 aDemo, Nicola1 aTezzele, Marco1 aMola, Andrea1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075342565&partnerID=40&md5=d76b8a1290053e7a84fb8801c0e6bb3d02037nas a2200133 4500008004100000245013800041210006900179520154400248100001701792700001901809700001701828700002101845856003701866 2019 eng d00aA complete data-driven framework for the efficient solution of parametric shape design and optimisation in naval engineering problems0 acomplete datadriven framework for the efficient solution of para3 aIn the reduced order modeling (ROM) framework, the solution of a parametric partial differential equation is approximated by combining the high-fidelity solutions of the problem at hand for several properly chosen configurations. Examples of the ROM application, in the naval field, can be found in [31, 24]. Mandatory ingredient for the ROM methods is the relation between the high-fidelity solutions and the parameters. Dealing with geometrical parameters, especially in the industrial context, this relation may be unknown and not trivial (simulations over hand morphed geometries) or very complex (high number of parameters or many nested morphing techniques). To overcome these scenarios, we propose in this contribution an efficient and complete data-driven framework involving ROM techniques for shape design and optimization, extending the pipeline presented in [7]. By applying the singular value decomposition (SVD) to the points coordinates defining the hull geometry –- assuming the topology is inaltered by the deformation –-, we are able to compute the optimal space which the deformed geometries belong to, hence using the modal coefficients as the new parameters we can reconstruct the parametric formulation of the domain. Finally the output of interest is approximated using the proper orthogonal decomposition with interpolation technique. To conclude, we apply this framework to a naval shape design problem where the bulbous bow is morphed to reduce the total resistance of the ship advancing in calm water.

1 aDemo, Nicola1 aTezzele, Marco1 aMola, Andrea1 aRozza, Gianluigi uhttps://arxiv.org/abs/1905.0598202563nas a2200169 4500008004100000245009100041210006900132520193100201100001702132700001902149700002102168700002502189700001902214700002102233700002102254856011802275 2019 eng d00aEfficient reduction in shape parameter space dimension for ship propeller blade design0 aEfficient reduction in shape parameter space dimension for ship 3 aIn this work, we present the results of a ship propeller design optimization campaign carried out in the framework of the research project PRELICA, funded by the Friuli Venezia Giulia regional government. The main idea of this work is to operate on a multidisciplinary level to identify propeller shapes that lead to reduced tip vortex-induced pressure and increased efficiency without altering the thrust. First, a specific tool for the bottom-up construction of parameterized propeller blade geometries has been developed. The algorithm proposed operates with a user defined number of arbitrary shaped or NACA airfoil sections, and employs arbitrary degree NURBS to represent the chord, pitch, skew and rake distribution as a function of the blade radial coordinate. The control points of such curves have been modified to generate, in a fully automated way, a family of blade geometries depending on as many as 20 shape parameters. Such geometries have then been used to carry out potential flow simulations with the Boundary Element Method based software PROCAL. Given the high number of parameters considered, such a preliminary stage allowed for a fast evaluation of the performance of several hundreds of shapes. In addition, the data obtained from the potential flow simulation allowed for the application of a parameter space reduction methodology based on active subspaces (AS) property, which suggested that the main propeller performance indices are, at a first but rather accurate approximation, only depending on a single parameter which is a linear combination of all the original geometric ones. AS analysis has also been used to carry out a constrained optimization exploiting response surface method in the reduced parameter space, and a sensitivity analysis based on such surrogate model. The few selected shapes were finally used to set up high fidelity RANS simulations and select an optimal shape.

1 aMola, Andrea1 aTezzele, Marco1 aGadalla, Mahmoud1 aValdenazzi, Federica1 aGrassi, Davide1 aPadovan, Roberta1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075395143&partnerID=40&md5=b6aa0fcedc2f88e78c295d0f437824d001763nas a2200145 4500008004100000245010400041210006900145300001000214490000800224520128300232100002301515700002101538700002101559856003701580 2019 eng d00aA Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization0 aFinite Volume approximation of the NavierStokes equations with n a27-450 v1873 aWe consider a Leray model with a nonlinear differential low-pass filter for the simulation of incompressible fluid flow at moderately large Reynolds number (in the range of a few thousands) with under-refined meshes. For the implementation of the model, we adopt the three-step algorithm Evolve-Filter-Relax (EFR). The Leray model has been extensively applied within a Finite Element (FE) framework. Here, we propose to combine the EFR algorithm with a computationally efficient Finite Volume (FV) method. Our approach is validated against numerical data available in the literature for the 2D flow past a cylinder and against experimental measurements for the 3D fluid flow in an idealized medical device, as recommended by the U.S. Food and Drug Administration. We will show that for similar levels of mesh refinement FV and FE methods provide significantly different results. Through our numerical experiments, we are able to provide practical directions to tune the parameters involved in the model. Furthermore, we are able to investigate the impact of mesh features (element type, non-orthogonality, local refinement, and element aspect ratio) and the discretization method for the convective term on the agreement between numerical solutions and experimental data.

1 aGirfoglio, Michele1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://arxiv.org/abs/1901.0525101886nas a2200145 4500008004100000245010400041210006900145300001000214490000800224520128700232100002301519700002101542700002101563856015601584 2019 eng d00aA Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization0 aFinite Volume approximation of the NavierStokes equations with n a27-450 v1873 aWe consider a Leray model with a nonlinear differential low-pass filter for the simulation of incompressible fluid flow at moderately large Reynolds number (in the range of a few thousands) with under-refined meshes. For the implementation of the model, we adopt the three-step algorithm Evolve-Filter-Relax (EFR). The Leray model has been extensively applied within a Finite Element (FE) framework. Here, we propose to combine the EFR algorithm with a computationally efficient Finite Volume (FV) method. Our approach is validated against numerical data available in the literature for the 2D flow past a cylinder and against experimental measurements for the 3D fluid flow in an idealized medical device, as recommended by the U.S. Food and Drug Administration. We will show that for similar levels of mesh refinement FV and FE methods provide significantly different results. Through our numerical experiments, we are able to provide practical directions to tune the parameters involved in EFR algorithm. Furthermore, we are able to investigate the impact of mesh features (element type, non-orthogonality, local refinement, and element aspect ratio) and the discretization method for the convective term on the agreement between numerical solutions and experimental data.

1 aGirfoglio, Michele1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85065471890&doi=10.1016%2fj.compfluid.2019.05.001&partnerID=40&md5=c982371b5b5d4b5664a676902aaa60f402128nas a2200169 4500008004100000245008400041210006900125300001200194490000800206520160300214100002101817700002101838700002101859700002101880700002001901856003701921 2019 eng d00aA Localized Reduced-Order Modeling Approach for PDEs with Bifurcating Solutions0 aLocalized ReducedOrder Modeling Approach for PDEs with Bifurcati a379-4030 v3513 aReduced-order modeling (ROM) commonly refers to the construction, based on a few solutions (referred to as snapshots) of an expensive discretized partial differential equation (PDE), and the subsequent application of low-dimensional discretizations of partial differential equations (PDEs) that can be used to more efficiently treat problems in control and optimization, uncertainty quantification, and other settings that require multiple approximate PDE solutions. In this work, a ROM is developed and tested for the treatment of nonlinear PDEs whose solutions bifurcate as input parameter values change. In such cases, the parameter domain can be subdivided into subregions, each of which corresponds to a different branch of solutions. Popular ROM approaches such as proper orthogonal decomposition (POD), results in a global low-dimensional basis that does no respect not take advantage of the often large differences in the PDE solutions corresponding to different subregions. Instead, in the new method, the k-means algorithm is used to cluster snapshots so that within cluster snapshots are similar to each other and are dissimilar to those in other clusters. This is followed by the construction of local POD bases, one for each cluster. The method also can detect which cluster a new parameter point belongs to, after which the local basis corresponding to that cluster is used to determine a ROM approximation. Numerical experiments show the effectiveness of the method both for problems for which bifurcation cause continuous and discontinuous changes in the solution of the PDE.

1 aHess, Martin, W.1 aAlla, Alessandro1 aQuaini, Annalisa1 aRozza, Gianluigi1 aGunzburger, Max uhttps://arxiv.org/abs/1807.0885102395nas a2200169 4500008004100000245008400041210006900125300001200194490000800206520175700214100002101971700002101992700002102013700002102034700002002055856015002075 2019 eng d00aA localized reduced-order modeling approach for PDEs with bifurcating solutions0 alocalized reducedorder modeling approach for PDEs with bifurcati a379-4030 v3513 aReduced-order modeling (ROM) commonly refers to the construction, based on a few solutions (referred to as snapshots) of an expensive discretized partial differential equation (PDE), and the subsequent application of low-dimensional discretizations of partial differential equations (PDEs) that can be used to more efficiently treat problems in control and optimization, uncertainty quantification, and other settings that require multiple approximate PDE solutions. Although ROMs have been successfully used in many settings, ROMs built specifically for the efficient treatment of PDEs having solutions that bifurcate as the values of input parameters change have not received much attention. In such cases, the parameter domain can be subdivided into subregions, each of which corresponds to a different branch of solutions. Popular ROM approaches such as proper orthogonal decomposition (POD), results in a global low-dimensional basis that does not respect the often large differences in the PDE solutions corresponding to different subregions. In this work, we develop and test a new ROM approach specifically aimed at bifurcation problems. In the new method, the k-means algorithm is used to cluster snapshots so that within cluster snapshots are similar to each other and are dissimilar to those in other clusters. This is followed by the construction of local POD bases, one for each cluster. The method also can detect which cluster a new parameter point belongs to, after which the local basis corresponding to that cluster is used to determine a ROM approximation. Numerical experiments show the effectiveness of the method both for problems for which bifurcation cause continuous and discontinuous changes in the solution of the PDE.

1 aHess, Martin, W.1 aAlla, Alessandro1 aQuaini, Annalisa1 aRozza, Gianluigi1 aGunzburger, Max uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85064313505&doi=10.1016%2fj.cma.2019.03.050&partnerID=40&md5=8b095034b9e539995facc7ce7bafa9e901894nas a2200145 4500008004100000245010300041210006900144300001200213490000800225520130700233100001701540700001901557700002101576856015101597 2019 eng d00aA non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces0 anonintrusive approach for the reconstruction of POD modal coeffi a873-8810 v3473 aReduced order modeling (ROM) provides an efficient framework to compute solutions of parametric problems. Basically, it exploits a set of precomputed high-fidelity solutions—computed for properly chosen parameters, using a full-order model—in order to find the low dimensional space that contains the solution manifold. Using this space, an approximation of the numerical solution for new parameters can be computed in real-time response scenario, thanks to the reduced dimensionality of the problem. In a ROM framework, the most expensive part from the computational viewpoint is the calculation of the numerical solutions using the full-order model. Of course, the number of collected solutions is strictly related to the accuracy of the reduced order model. In this work, we aim at increasing the precision of the model also for few input solutions by coupling the proper orthogonal decomposition with interpolation (PODI)—a data-driven reduced order method—with the active subspace (AS) property, an emerging tool for reduction in parameter space. The enhanced ROM results in a reduced number of input solutions to reach the desired accuracy. In this contribution, we present the numerical results obtained by applying this method to a structural problem and in a fluid dynamics one.

1 aDemo, Nicola1 aTezzele, Marco1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075379471&doi=10.1016%2fj.crme.2019.11.012&partnerID=40&md5=dcb27af39dc14dc8c3a4a5f681f7d84b01425nas a2200169 4500008004100000022001400041245009200055210006900147300001100216490000700227520089500234100002301129700002201152700002101174700002301195856003701218 2019 eng d a1991-712000aParametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems0 aParametric PODGalerkin Model Order Reduction for UnsteadyState H a1–320 v273 aA parametric reduced order model based on proper orthogonal decom- position with Galerkin projection has been developed and applied for the modeling of heat transport in T-junction pipes which are widely found in nuclear power plants. Thermal mixing of different temperature coolants in T-junction pipes leads to tem- perature fluctuations and this could potentially cause thermal fatigue in the pipe walls. The novelty of this paper is the development of a parametric ROM considering the three dimensional, incompressible, unsteady Navier-Stokes equations coupled with the heat transport equation in a finite volume approximation. Two different paramet- ric cases are presented in this paper: parametrization of the inlet temperatures and parametrization of the kinematic viscosity. Different training spaces are considered and the results are compared against the full order model.

1 aGeorgaka, Sokratia1 aStabile, Giovanni1 aRozza, Gianluigi1 aBluck, Michael, J. uhttps://arxiv.org/abs/1808.0517500639nas a2200157 4500008004100000020001800041245010400059210006900163100001700232700002200249700002300271700002300294700002100317700002000338856012300358 2019 eng d a978089448769900aPOD-Galerkin Reduced Order Model of the Boussinesq Approximation for Buoyancy-Driven Enclosed Flows0 aPODGalerkin Reduced Order Model of the Boussinesq Approximation 1 aStar, Kelbij1 aStabile, Giovanni1 aGeorgaka, Sokratia1 aBelloni, Francesco1 aRozza, Gianluigi1 aDegroote, Joris uhttps://math.sissa.it/publication/pod-galerkin-reduced-order-model-boussinesq-approximation-buoyancy-driven-enclosed-001658nas a2200157 4500008004100000245009100041210006900132300001200201490000800213520106300221100001701284700001701301700002001318700002101338856014101359 2019 eng d00aA POD-selective inverse distance weighting method for fast parametrized shape morphing0 aPODselective inverse distance weighting method for fast parametr a860-8840 v1173 aEfficient shape morphing techniques play a crucial role in the approximation of partial differential equations defined in parametrized domains, such as for fluid-structure interaction or shape optimization problems. In this paper, we focus on inverse distance weighting (IDW) interpolation techniques, where a reference domain is morphed into a deformed one via the displacement of a set of control points. We aim at reducing the computational burden characterizing a standard IDW approach without significantly compromising the accuracy. To this aim, first we propose an improvement of IDW based on a geometric criterion that automatically selects a subset of the original set of control points. Then, we combine this new approach with a dimensionality reduction technique based on a proper orthogonal decomposition of the set of admissible displacements. This choice further reduces computational costs. We verify the performances of the new IDW techniques on several tests by investigating the trade-off reached in terms of accuracy and efficiency.

1 aBallarin, F.1 aD'Amario, A.1 aPerotto, Simona1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056396233&doi=10.1002%2fnme.5982&partnerID=40&md5=6aabcbdc9a0da25e36575a0ebfac034f02191nas a2200169 4500008004100000245015000041210006900191300001200260490000800272520148000280100002701760700002201787700001701809700002401826700002101850856015001871 2019 eng d00aA reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow0 areduced basis approach for PDEs on parametrized geometries based a568-5870 v3473 aWe propose a model order reduction technique integrating the Shifted Boundary Method (SBM) with a POD-Galerkin strategy. This approach allows to deal with complex parametrized domains in an efficient and straightforward way. The impact of the proposed approach is threefold. First, problems involving parametrizations of complex geometrical shapes and/or large domain deformations can be efficiently solved at full-order by means of the SBM. This unfitted boundary method permits to avoid remeshing and the tedious handling of cut cells by introducing an approximate surrogate boundary. Second, the computational effort is reduced by the development of a Reduced Order Model (ROM) technique based on a POD-Galerkin approach. Third, the SBM provides a smooth mapping from the true to the surrogate domain, and for this reason, the stability and performance of the reduced order basis are enhanced. This feature is the net result of the combination of the proposed ROM approach and the SBM. Similarly, the combination of the SBM with a projection-based ROM gives the great advantage of an easy and fast to implement algorithm considering geometrical parametrization with large deformations. The transformation of each geometry to a reference geometry (morphing) is in fact not required. These combined advantages will allow the solution of PDE problems more efficiently. We illustrate the performance of this approach on a number of two-dimensional Stokes flow problems.

1 aKaratzas, Efthymios, N1 aStabile, Giovanni1 aNouveau, Leo1 aScovazzi, Guglielmo1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060107322&doi=10.1016%2fj.cma.2018.12.040&partnerID=40&md5=1a3234f0cb000c91494d946428f8ebef01370nas a2200133 4500008004100000245010900041210006900150300001400219490000700233520091800240100002001158700002101178856003701199 2019 eng d00aReduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations0 aReduced basis approaches for parametrized bifurcation problems h a112–1350 v813 aThis work focuses on the computationally efficient detection of the buckling phenomena and bifurcation analysis of the parametric Von Kármán plate equations based on reduced order methods and spectral analysis. The computational complexity - due to the fourth order derivative terms, the non-linearity and the parameter dependence - provides an interesting benchmark to test the importance of the reduction strategies, during the construction of the bifurcation diagram by varying the parameter(s). To this end, together the state equations, we carry out also an analysis of the linearized eigenvalue problem, that allows us to better understand the physical behaviour near the bifurcation points, where we lose the uniqueness of solution. We test this automatic methodology also in the two parameter case, understanding the evolution of the first buckling mode. journal = Journal of Scientific Computing

1 aPichi, Federico1 aRozza, Gianluigi uhttps://arxiv.org/abs/1804.0201401440nas a2200133 4500008004100000245010900041210006900150300001200219490000700231520087600238100002001114700002101134856015101155 2019 eng d00aReduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations0 aReduced Basis Approaches for Parametrized Bifurcation Problems h a112-1350 v813 aThis work focuses on the computationally efficient detection of the buckling phenomena and bifurcation analysis of the parametric Von Kármán plate equations based on reduced order methods and spectral analysis. The computational complexity—due to the fourth order derivative terms, the non-linearity and the parameter dependence—provides an interesting benchmark to test the importance of the reduction strategies, during the construction of the bifurcation diagram by varying the parameter(s). To this end, together the state equations, we carry out also an analysis of the linearized eigenvalue problem, that allows us to better understand the physical behaviour near the bifurcation points, where we lose the uniqueness of solution. We test this automatic methodology also in the two parameter case, understanding the evolution of the first buckling mode.

1 aPichi, Federico1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068973907&doi=10.1007%2fs10915-019-01003-3&partnerID=40&md5=a09af83ce45183d6965cdb79d87a919b01735nas a2200157 4500008004100000245007200041210006900113300001400182490000700196520114500203100002201348700001701370700001801387700002101405856015101426 2019 eng d00aA reduced order variational multiscale approach for turbulent flows0 areduced order variational multiscale approach for turbulent flow a2349-23680 v453 aThe purpose of this work is to present different reduced order model strategies starting from full order simulations stabilized using a residual-based variational multiscale (VMS) approach. The focus is on flows with moderately high Reynolds numbers. The reduced order models (ROMs) presented in this manuscript are based on a POD-Galerkin approach. Two different reduced order models are presented, which differ on the stabilization used during the Galerkin projection. In the first case, the VMS stabilization method is used at both the full order and the reduced order levels. In the second case, the VMS stabilization is used only at the full order level, while the projection of the standard Navier-Stokes equations is performed instead at the reduced order level. The former method is denoted as consistent ROM, while the latter is named non-consistent ROM, in order to underline the different choices made at the two levels. Particular attention is also devoted to the role of inf-sup stabilization by means of supremizers in ROMs based on a VMS formulation. Finally, the developed methods are tested on a numerical benchmark.

1 aStabile, Giovanni1 aBallarin, F.1 aZuccarino, G.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068076665&doi=10.1007%2fs10444-019-09712-x&partnerID=40&md5=af0142e6d13bbc2e88c6f31750aef6ad02446nas a2200121 4500008004100000245014200041210006900183520189700252100001902149700001702168700002102185856011802206 2019 eng d00aShape optimization through proper orthogonal decomposition with interpolation and dynamic mode decomposition enhanced by active subspaces0 aShape optimization through proper orthogonal decomposition with 3 aWe propose a numerical pipeline for shape optimization in naval engineering involving two different non-intrusive reduced order method (ROM) techniques. Such methods are proper orthogonal decomposition with interpolation (PODI) and dynamic mode decomposition (DMD). The ROM proposed will be enhanced by active subspaces (AS) as a pre-processing tool that reduce the parameter space dimension and suggest better sampling of the input space. We will focus on geometrical parameters describing the perturbation of a reference bulbous bow through the free form deformation (FFD) technique. The ROM are based on a finite volume method (FV) to simulate the multi-phase incompressible flow around the deformed hulls. In previous works we studied the reduction of the parameter space in naval engineering through AS [38, 10] focusing on different parts of the hull. PODI and DMD have been employed for the study of fast and reliable shape optimization cycles on a bulbous bow in [9]. The novelty of this work is the simultaneous reduction of both the input parameter space and the output fields of interest. In particular AS will be trained computing the total drag resistance of a hull advancing in calm water and its gradients with respect to the input parameters. DMD will improve the performance of each simulation of the campaign using only few snapshots of the solution fields in order to predict the regime state of the system. Finally PODI will interpolate the coefficients of the POD decomposition of the output fields for a fast approximation of all the fields at new untried parameters given by the optimization algorithm. This will result in a non-intrusive data-driven numerical optimization pipeline completely independent with respect to the full order solver used and it can be easily incorporated into existing numerical pipelines, from the reference CAD to the optimal shape.

1 aTezzele, Marco1 aDemo, Nicola1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075390244&partnerID=40&md5=3e1f2e9a2539d34594caff13766c94b801397nas a2200193 4500008004100000245006200041210006000103260003800163490000800201520080600209100002101015700002101036700002501057700001801082700001601100700002801116700002201144856003701166 2019 eng d00aA Spectral Element Reduced Basis Method in Parametric CFD0 aSpectral Element Reduced Basis Method in Parametric CFD bSpringer International Publishing0 v1263 aWe consider the Navier-Stokes equations in a channel with varying Reynolds numbers. The model is discretized with high-order spectral element ansatz functions, resulting in 14 259 degrees of freedom. The steady-state snapshot solu- tions define a reduced order space, which allows to accurately evaluate the steady- state solutions for varying Reynolds number with a reduced order model within a fixed-point iteration. In particular, we compare different aspects of implementing the reduced order model with respect to the use of a spectral element discretization. It is shown, how a multilevel static condensation in the pressure and velocity boundary degrees of freedom can be combined with a reduced order modelling approach to enhance computational times in parametric many-query scenarios.

1 aHess, Martin, W.1 aRozza, Gianluigi1 aRadu, Florin, Adrian1 aKumar, Kundan1 aBerre, Inga1 aNordbotten, Jan, Martin1 aPop, Iuliu, Sorin uhttps://arxiv.org/abs/1712.0643201451nas a2200133 4500008004100000245006200041210006000103300001200163490000800175520093900183100002101122700002101143856015301164 2019 eng d00aA spectral element reduced basis method in parametric CFD0 aspectral element reduced basis method in parametric CFD a693-7010 v1263 aWe consider the Navier-Stokes equations in a channel with varying Reynolds numbers. The model is discretized with high-order spectral element ansatz functions, resulting in 14,259 degrees of freedom. The steady-state snapshot solutions define a reduced order space, which allows to accurately evaluate the steady-state solutions for varying Reynolds number with a reduced order model within a fixed-point iteration. In particular, we compare different aspects of implementing the reduced order model with respect to the use of a spectral element discretization. It is shown, how a multilevel static condensation (Karniadakis and Sherwin, Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford University Press, Oxford, 2005) in the pressure and velocity boundary degrees of freedom can be combined with a reduced order modelling approach to enhance computational times in parametric many-query scenarios.

1 aHess, Martin, W.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060005503&doi=10.1007%2f978-3-319-96415-7_64&partnerID=40&md5=d1a900db8ddb92cd818d797ec212a4c601594nas a2200145 4500008004100000245006300041210006100104300001200165490000700177520106000184100001601244700001701260700002101277856015001298 2019 eng d00aA Weighted POD Method for Elliptic PDEs with Random Inputs0 aWeighted POD Method for Elliptic PDEs with Random Inputs a136-1530 v813 aIn this work we propose and analyze a weighted proper orthogonal decomposition method to solve elliptic partial differential equations depending on random input data, for stochastic problems that can be transformed into parametric systems. The algorithm is introduced alongside the weighted greedy method. Our proposed method aims to minimize the error in a L2 norm and, in contrast to the weighted greedy approach, it does not require the availability of an error bound. Moreover, we consider sparse discretization of the input space in the construction of the reduced model; for high-dimensional problems, provided the sampling is done accordingly to the parameters distribution, this enables a sensible reduction of computational costs, while keeping a very good accuracy with respect to high fidelity solutions. We provide many numerical tests to assess the performance of the proposed method compared to an equivalent reduced order model without weighting, as well as to the weighted greedy approach, in both low and high dimensional problems.

1 a.Venturi, L1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053798049&doi=10.1007%2fs10915-018-0830-7&partnerID=40&md5=5cad501b6ef1955da55868807079ee5d01267nas a2200145 4500008004100000245010200041210006900143300001000212520067900222100001600901700001400917700001700931700002100948856015200969 2019 eng d00aWeighted Reduced Order Methods for Parametrized Partial Differential Equations with Random Inputs0 aWeighted Reduced Order Methods for Parametrized Partial Differen a27-403 aIn this manuscript we discuss weighted reduced order methods for stochastic partial differential equations. Random inputs (such as forcing terms, equation coefficients, boundary conditions) are considered as parameters of the equations. We take advantage of the resulting parametrized formulation to propose an efficient reduced order model; we also profit by the underlying stochastic assumption in the definition of suitable weights to drive to reduction process. Two viable strategies are discussed, namely the weighted reduced basis method and the weighted proper orthogonal decomposition method. A numerical example on a parametrized elasticity problem is shown.

1 aVenturi, L.1 aTorlo, D.1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084009379&doi=10.1007%2f978-3-030-04870-9_2&partnerID=40&md5=446bcc1f331167bbba67bc00fb17015000586nas a2200133 4500008004100000245010800041210006900149300001200218490000700230100002200237700002200259700002100281856015000302 2018 eng d00aCertified Reduced Basis Approximation for the Coupling of Viscous and Inviscid Parametrized Flow Models0 aCertified Reduced Basis Approximation for the Coupling of Viscou a197-2190 v741 aMartini, Immanuel1 aHaasdonk, Bernard1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85017156114&doi=10.1007%2fs10915-017-0430-y&partnerID=40&md5=023ef0bb95713f4442d1fa374c92a96400576nas a2200133 4500008004100000245012400041210006900165260001300234300001400247100001900261700001700280700002100297856012400318 2018 eng d00aCombined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods0 aCombined parameter and model reduction of cardiovascular problem bSpringer a185–2071 aTezzele, Marco1 aBallarin, F.1 aRozza, Gianluigi uhttps://math.sissa.it/publication/combined-parameter-and-model-reduction-cardiovascular-problems-means-active-subspaces01813nas a2200205 4500008004100000245005400041210005400095260001400149300000700163520117300170100002601343700001901369700002001388700002101408700002201429700002101451700002601472700002501498856008401523 2018 eng d00aComputational methods in cardiovascular mechanics0 aComputational methods in cardiovascular mechanics bCRC Press a543 aThe introduction of computational models in cardiovascular sciences has been progressively bringing new and unique tools for the investigation of the physiopathology. Together with the dramatic improvement of imaging and measuring devices on one side, and of computational architectures on the other one, mathematical and numerical models have provided a new, clearly noninvasive, approach for understanding not only basic mechanisms but also patient-specific conditions, and for supporting the design and the development of new therapeutic options. The terminology in silico is, nowadays, commonly accepted for indicating this new source of knowledge added to traditional in vitro and in vivo investigations. The advantages of in silico methodologies are basically the low cost in terms of infrastructures and facilities, the reduced invasiveness and, in general, the intrinsic predictive capabilities based on the use of mathematical models. The disadvantages are generally identified in the distance between the real cases and their virtual counterpart required by the conceptual modeling that can be detrimental for the reliability of numerical simulations.

1 aAuricchio, Ferdinando1 aConti, Michele1 aLefieux, Adrian1 aMorganti, Simone1 aReali, Alessandro1 aRozza, Gianluigi1 aVeneziani, Alessandro1 aLabrosse, Michel, F. uhttps://www.taylorfrancis.com/books/e/9781315280288/chapters/10.1201%2Fb21917-502303nas a2200169 4500008004100000245011900041210006900160260000800229300000700237490000600244520167500250100001901925700002501944700001701969700002101986856012602007 2018 eng d00aDimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems0 aDimension reduction in heterogeneous parametric spaces with appl cSep a250 v53 aWe present the results of the first application in the naval architecture field of a methodology based on active subspaces properties for parameters space reduction. The physical problem considered is the one of the simulation of the hydrodynamic flow past the hull of a ship advancing in calm water. Such problem is extremely relevant at the preliminary stages of the ship design, when several flow simulations are typically carried out by the engineers to assess the dependence of the hull total resistance on the geometrical parameters of the hull, and others related with flows and hull properties. Given the high number of geometric and physical parameters which might affect the total ship drag, the main idea of this work is to employ the active subspaces properties to identify possible lower dimensional structures in the parameter space. Thus, a fully automated procedure has been implemented to produce several small shape perturbations of an original hull CAD geometry, in order to exploit the resulting shapes to run high fidelity flow simulations with different structural and physical parameters as well, and then collect data for the active subspaces analysis. The free form deformation procedure used to morph the hull shapes, the high fidelity solver based on potential flow theory with fully nonlinear free surface treatment, and the active subspaces analysis tool employed in this work have all been developed and integrated within SISSA mathLab as open source tools. The contribution will also discuss several details of the implementation of such tools, as well as the results of their application to the selected target engineering problem.

1 aTezzele, Marco1 aSalmoiraghi, Filippo1 aMola, Andrea1 aRozza, Gianluigi uhttps://math.sissa.it/publication/dimension-reduction-heterogeneous-parametric-spaces-application-naval-engineering-shape02869nas a2200241 4500008004100000022002200041245016200063210006900225260007400294520193000368653002102298653002802319653003102347653003202378653002602410653003002436653002602466100001702492700001902509700001702528700002102545856006102566 2018 eng d a978-1-880653-87-600aAn efficient shape parametrisation by free-form deformation enhanced by active subspace for hull hydrodynamic ship design problems in open source environment0 aefficient shape parametrisation by freeform deformation enhanced aSapporo, JapanbInternational Society of Offshore and Polar Engineers3 aIn this contribution, we present the results of the application of a parameter space reduction methodology based on active subspaces to the hull hydrodynamic design problem. Several parametric deformations of an initial hull shape are considered to assess the influence of the shape parameters considered on the hull total drag. The hull resistance is typically computed by means of numerical simulations of the hydrodynamic flow past the ship. Given the high number of parameters involved - which might result in a high number of time consuming hydrodynamic simulations - assessing whether the parameters space can be reduced would lead to considerable computational cost reduction. Thus, the main idea of this work is to employ the active subspaces to identify possible lower dimensional structures in the parameter space, or to verify the parameter distribution in the position of the control points. To this end, a fully automated procedure has been implemented to produce several small shape perturbations of an original hull CAD geometry which are then used to carry out high-fidelity flow simulations and collect data for the active subspaces analysis. To achieve full automation of the open source pipeline described, both the free form deformation methodology employed for the hull perturbations and the solver based on unsteady potential flow theory, with fully nonlinear free surface treatment, are directly interfaced with CAD data structures and operate using IGES vendor-neutral file formats as input files. The computational cost of the fluid dynamic simulations is further reduced through the application of dynamic mode decomposition to reconstruct the steady state total drag value given only few initial snapshots of the simulation. The active subspaces analysis is here applied to the geometry of the DTMB-5415 naval combatant hull, which is which is a common benchmark in ship hydrodynamics simulations.10aActive subspaces10aBoundary element method10aDynamic mode decomposition10aFluid structure interaction10aFree form deformation10aFully nonlinear potential10aNumerical towing tank1 aDemo, Nicola1 aTezzele, Marco1 aMola, Andrea1 aRozza, Gianluigi uhttps://www.onepetro.org/conference-paper/ISOPE-I-18-48100373nas a2200133 4500008004100000245003700041210003600078300000800114490000600122100001700128700001900145700002100164856005400185 2018 eng d00aEZyRB: Easy Reduced Basis method0 aEZyRB Easy Reduced Basis method a6610 v31 aDemo, Nicola1 aTezzele, Marco1 aRozza, Gianluigi uhttps://joss.theoj.org/papers/10.21105/joss.0066101151nas a2200133 4500008004100000245012600041210006900167300001200236490000800248520056200256100002200818700002100840856015600861 2018 eng d00aFinite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations0 aFinite volume PODGalerkin stabilised reduced order methods for t a273-2840 v1733 aIn this work a stabilised and reduced Galerkin projection of the incompressible unsteady Navier–Stokes equations for moderate Reynolds number is presented. The full-order model, on which the Galerkin projection is applied, is based on a finite volumes approximation. The reduced basis spaces are constructed with a POD approach. Two different pressure stabilisation strategies are proposed and compared: the former one is based on the supremizer enrichment of the velocity space, and the latter one is based on a pressure Poisson equation approach.

1 aStabile, Giovanni1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85043366603&doi=10.1016%2fj.compfluid.2018.01.035&partnerID=40&md5=c15435ea3b632e55450da19ba2bb612501593nas a2200169 4500008004100000245012200041210006900163260002100232300001200253490000700265520094600272100002501218700002201243700001801265700002101283856011901304 2018 eng d00aFree-form deformation, mesh morphing and reduced-order methods: enablers for efficient aerodynamic shape optimisation0 aFreeform deformation mesh morphing and reducedorder methods enab bTaylor & Francis a233-2470 v323 aIn this work, we provide an integrated pipeline for the model-order reduction of turbulent flows around parametrised geometries in aerodynamics. In particular, free-form deformation is applied for geometry parametrisation, whereas two different reduced-order models based on proper orthogonal decomposition (POD) are employed in order to speed-up the full-order simulations: the first method exploits POD with interpolation, while the second one is based on domain decomposition. For the sampling of the parameter space, we adopt a Greedy strategy coupled with Constrained Centroidal Voronoi Tessellations, in order to guarantee a good compromise between space exploration and exploitation. The proposed framework is tested on an industrially relevant application, i.e. the front-bumper morphing of the DrivAer car model, using the finite-volume method for the full-order resolution of the Reynolds-Averaged Navier–Stokes equations.

1 aSalmoiraghi, Filippo1 aScardigli, Angela1 aTelib, Haysam1 aRozza, Gianluigi uhttps://math.sissa.it/publication/free-form-deformation-mesh-morphing-and-reduced-order-methods-enablers-efficient01777nas a2200157 4500008004100000245013300041210006900174260003000243520120300273100001901476700001701495700002101512700001701533700002101550856004801571 2018 eng d00aModel Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics0 aModel Order Reduction by means of Active Subspaces and Dynamic M aTrieste, ItalybIOS Press3 aWe present the results of the application of a parameter space reduction methodology based on active subspaces (AS) to the hull hydrodynamic design problem. Several parametric deformations of an initial hull shape are considered to assess the influence of the shape parameters on the hull wave resistance. Such problem is relevant at the preliminary stages of the ship design, when several flow simulations are carried out by the engineers to establish a certain sensibility with respect to the parameters, which might result in a high number of time consuming hydrodynamic simulations. The main idea of this work is to employ the AS to identify possible lower dimensional structures in the parameter space. The complete pipeline involves the use of free form deformation to parametrize and deform the hull shape, the full order solver based on unsteady potential flow theory with fully nonlinear free surface treatment directly interfaced with CAD, the use of dynamic mode decomposition to reconstruct the final steady state given only few snapshots of the simulation, and the reduction of the parameter space by AS, and shared subspace. Response surface method is used to minimize the total drag.1 aTezzele, Marco1 aDemo, Nicola1 aGadalla, Mahmoud1 aMola, Andrea1 aRozza, Gianluigi uhttp://ebooks.iospress.nl/publication/4927000505nas a2200145 4500008004100000245011100041210006900152300001600221490000700237100002200244700001700266700001600283700002100299856003900320 2018 eng d00aModel Reduction for Parametrized Optimal Control Problems in Environmental Marine Sciences and Engineering0 aModel Reduction for Parametrized Optimal Control Problems in Env aB1055-B10790 v401 aStrazzullo, Maria1 aBallarin, F.1 aMosetti, R.1 aRozza, Gianluigi uhttps://doi.org/10.1137/17M115059100402nas a2200133 4500008004100000245004500041210004400086300000800130490000600138100001700144700001900161700002100180856006700201 2018 eng d00aPyDMD: Python Dynamic Mode Decomposition0 aPyDMD Python Dynamic Mode Decomposition a5300 v31 aDemo, Nicola1 aTezzele, Marco1 aRozza, Gianluigi uhttps://joss.theoj.org/papers/734e4326edd5062c6e8ee98d03df9e1d00501nas a2200121 4500008004100000245013400041210006900175490000700244100002100251700002000272700002100292856006600313 2018 eng d00aReduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings0 aReduced Basis Approximation and A Posteriori Error Estimation Ap0 v151 aHuynh, D., B. P.1 aPichi, Federico1 aRozza, Gianluigi uhttps://link.springer.com/chapter/10.1007/978-3-319-94676-4_802258nas a2200145 4500008004100000245013400041210006900175300001200244490000700256520163800263100001801901700002001919700002101939856015201960 2018 eng d00aReduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings0 aReduced Basis Approximation and A Posteriori Error Estimation Ap a203-2470 v153 aIn this work we consider (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for elasticity problems in affinely parametrized geometries. The essential ingredients of the methodology are: a Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold”—dimension reduction; an efficient and effective greedy sampling methods for identification of optimal and numerically stable approximations—rapid convergence; an a posteriori error estimation procedures—rigorous and sharp bounds for the functional outputs related with the underlying solution or related quantities of interest, like stress intensity factor; and Offline-Online computational decomposition strategies—minimum marginal cost for high performance in the real-time and many-query (e.g., design and optimization) contexts. We present several illustrative results for linear elasticity problem in parametrized geometries representing 2D Cartesian or 3D axisymmetric configurations like an arc-cantilever beam, a center crack problem, a composite unit cell or a woven composite beam, a multi-material plate, and a closed vessel. We consider different parametrization for the systems: either physical quantities—to model the materials and loads—and geometrical parameters—to model different geometrical configurations—with isotropic and orthotropic materials working in plane stress and plane strain approximation. We would like to underline the versatility of the methodology in very different problems. As last example we provide a nonlinear setting with increased complexity.

1 aHuynh, D.B.P.1 aPichi, Federico1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055036627&doi=10.1007%2f978-3-319-94676-4_8&partnerID=40&md5=e9c07038e7bcc6668ec702c0653410dc01912nas a2200157 4500008004100000245009800041210006900139260003000208520136800238100001701606700001901623700002101642700002201663700002101685856004801706 2018 eng d00aShape Optimization by means of Proper Orthogonal Decomposition and Dynamic Mode Decomposition0 aShape Optimization by means of Proper Orthogonal Decomposition a aTrieste, ItalybIOS Press3 aShape optimization is a challenging task in many engineering fields, since the numerical solutions of parametric system may be computationally expensive. This work presents a novel optimization procedure based on reduced order modeling, applied to a naval hull design problem. The advantage introduced by this method is that the solution for a specific parameter can be expressed as the combination of few numerical solutions computed at properly chosen parametric points. The reduced model is built using the proper orthogonal decomposition with interpolation (PODI) method. We use the free form deformation (FFD) for an automated perturbation of the shape, and the finite volume method to simulate the multiphase incompressible flow around the deformed hulls. Further computational reduction is done by the dynamic mode decomposition (DMD) technique: from few high dimensional snapshots, the system evolution is reconstructed and the final state of the simulation is faithfully approximated. Finally the global optimization algorithm iterates over the reduced space: the approximated drag and lift coefficients are projected to the hull surface, hence the resistance is evaluated for the new hulls until the convergence to the optimal shape is achieved. We will present the results obtained applying the described procedure to a typical Fincantieri cruise ship.1 aDemo, Nicola1 aTezzele, Marco1 aGustin, Gianluca1 aLavini, Gianpiero1 aRozza, Gianluigi uhttp://ebooks.iospress.nl/publication/4922901770nas a2200169 4500008004100000245006400041210006100105520122900166100001801395700001801413700001401431700001701445700001701462700001901479700002101498856008101519 2018 eng d00aSRTP 2.0 - The evolution of the safe return to port concept0 aSRTP 20 The evolution of the safe return to port concept3 aIn 2010 IMO (International Maritime Organisation) introduced new rules in SOLAS with the aim of intrinsically increase the safety of passenger ships. This requirement is achieved by providing safe areas for passengers and essential services for allowing ship to Safely Return to Port (SRtP). The entry into force of these rules has changed the way to design passenger ships. In this respect big effort in the research has been done by industry to address design issues related to the impact on failure analysis of the complex interactions among systems. Today the research activity is working to bring operational matters in the design stage. This change of research focus was necessary because human factor and the way to operate the ship itself after a casualty on board may have a big impact in the design of the ship/systems. Also the management of the passengers after a casualty is becoming a major topic for safety. This paper presents the state of the art of Italian knowledge in the field of system engineering applied to passenger ship address to safety improvement and design reliability. An overview of present tools and methodologies will be offered together with future focuses in the research activity.

1 aCangelosi, D.1 aBonvicini, A.1 aNardo, M.1 aMola, Andrea1 aMarchese, A.1 aTezzele, Marco1 aRozza, Gianluigi uhttps://math.sissa.it/publication/srtp-20-evolution-safe-return-port-concept01436nas a2200145 4500008004100000245011100041210006900152300001400221490000600235520085400241100001401095700001701109700002101126856014301147 2018 eng d00aStabilized weighted reduced basis methods for parametrized advection dominated problems with random inputs0 aStabilized weighted reduced basis methods for parametrized advec a1475-15020 v63 aIn this work, we propose viable and eficient strategies for stabilized parametrized advection dominated problems, with random inputs. In particular, we investigate the combination of the wRB (weighted reduced basis) method for stochastic parametrized problems with the stabilized RB (reduced basis) method, which is the integration of classical stabilization methods (streamline/upwind Petrov-Galerkin (SUPG) in our case) in the ofine-online structure of the RB method. Moreover, we introduce a reduction method that selectively enables online stabilization; this leads to a sensible reduction of computational costs, while keeping a very good accuracy with respect to high-fdelity solutions. We present numerical test cases to assess the performance of the proposed methods in steady and unsteady problems related to heat transfer phenomena.

1 aTorlo, D.1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85058246502&doi=10.1137%2f17M1163517&partnerID=40&md5=6c54e2f0eb727cb85060e988486b8ac801208nas a2200109 4500008004100000245010500041210006900146520071800215100002100933700002100954856012300975 2017 eng d00aOn the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics0 aApplication of Reduced Basis Methods to Bifurcation Problems in 3 aIn this paper we apply a reduced basis framework for the computation of flow bifurcation (and stability) problems in fluid dynamics. The proposed method aims at reducing the complexity and the computational time required for the construction of bifurcation and stability diagrams. The method is quite general since it can in principle be specialized to a wide class of nonlinear problems, but in this work we focus on an application in incompressible fluid dynamics at low Reynolds numbers. The validation of the reduced order model with the full order computation for a benchmark cavity flow problem is promising.

1 aPitton, Giuseppe1 aRozza, Gianluigi uhttps://math.sissa.it/publication/application-reduced-basis-methods-bifurcation-problems-incompressible-fluid-dynamics02450nas a2200169 4500008004100000020002200041024003400063245010200097210006900199250004300268260002500311490000900336520177800345100001802123700002102141856011802162 2017 eng d a978-3-319-65869-8 aDOI 10.1007/978-3-319-65870-400aCertified Reduced Basis Method for Affinely Parametric Isogeometric Analysis NURBS Approximation0 aCerti fied Reduced Basis Method for Affinely Parametric Isogeome aBittencourt, Dumont, Hesthaven. (Eds). aHeildebergbSpringer0 v 1193 aIn this work we apply reduced basis methods for parametric PDEs to an isogeometric formulation based on

NURBS. The motivation for this work is an integrated and complete work pipeline from CAD to parametrization

of domain geometry, then from full order to certified reduced basis solution. IsoGeometric Analysis

(IGA) is a growing research theme in scientic computing and computational mechanics, as well as reduced

basis methods for parametric PDEs. Their combination enhances the solution of some class of problems,

especially the ones characterized by parametrized geometries we introduced in this work. For a general

overview on Reduced Basis (RB) methods we recall [7, 15] and on IGA [3]. This work wants to demonstrate

that it is also possible for some class of problems to deal with ane geometrical parametrization combined

with a NURBS IGA formulation. This is what this work brings as original ingredients with respect to other

works dealing with reduced order methods and IGA (set in a non-affine formulation, and using a POD [2]

sampling without certication: see for example for potential flows [12] and for Stokes flows [17]). In this work

we show a certication of accuracy and a complete integration between IGA formulation and parametric

certified greedy RB formulation. Section 2 recalls the abstract setting for parametrized PDEs, Section 3

recalls IGA setting, Section 4 deals with RB formulation, and Section 5 illustrates two numerical examples in heat transfer with different parametrization.

1 aDevaud, Denis1 aRozza, Gianluigi uhttps://math.sissa.it/publication/certi-fied-reduced-basis-method-affinely-parametric-isogeometric-analysis-nurbs00572nas a2200157 4500008004100000245006200041210005700103300001400160490000700174100001800181700001700199700001700216700001700233700002100250856014300271 2017 eng d00aOn a certified smagorinsky reduced basis turbulence model0 acertified smagorinsky reduced basis turbulence model a3047-30670 v551 aRebollo, T.C.1 aÁvila, E.D.1 aMarmol, M.G.1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85039928218&doi=10.1137%2f17M1118233&partnerID=40&md5=221d9cd2bcc74121fcef93efd9d3d76c02409nas a2200205 4500008004100000245015800041210006900199260001200268300000800280490000800288520159500296653004301891653002501934653002301959653003401982100002102016700002102037700002102058856012402079 2017 eng d00aComputational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: Applications to Coanda effect in cardiology0 aComputational reduction strategies for the detection of steady b c09/2017 a5570 v3443 aWe focus on reducing the computational costs associated with the hydrodynamic stability of solutions of the incompressible Navier–Stokes equations for a Newtonian and viscous fluid in contraction–expansion channels. In particular, we are interested in studying steady bifurcations, occurring when non-unique stable solutions appear as physical and/or geometric control parameters are varied. The formulation of the stability problem requires solving an eigenvalue problem for a partial differential operator. An alternative to this approach is the direct simulation of the flow to characterize the asymptotic behavior of the solution. Both approaches can be extremely expensive in terms of computational time. We propose to apply Reduced Order Modeling (ROM) techniques to reduce the demanding computational costs associated with the detection of a type of steady bifurcations in fluid dynamics. The application that motivated the present study is the onset of asymmetries (i.e., symmetry breaking bifurcation) in blood flow through a regurgitant mitral valve, depending on the Reynolds number and the regurgitant mitral valve orifice shape.

This chapter presents an overview of model order reduction – a new paradigm in the field of simulation-based engineering sciences, and one that can tackle the challenges and leverage the opportunities of modern ICT technologies. Despite the impressive progress attained by simulation capabilities and techniques, a number of challenging problems remain intractable. These problems are of different nature, but are common to many branches of science and engineering. Among them are those related to high-dimensional problems, problems involving very different time scales, models defined in degenerate domains with at least one of the characteristic dimensions much smaller than the others, model requiring real-time simulation, and parametric models. All these problems represent a challenge for standard mesh-based discretization techniques; yet the ability to solve these problems efficiently would open unexplored routes for real-time simulation, inverse analysis, uncertainty quantification and propagation, real-time optimization, and simulation-based control – critical needs in many branches of science and engineering. Model order reduction offers new simulation alternatives by circumventing, or at least alleviating, otherwise intractable computational challenges. In the present chapter, we revisit three of these model reduction techniques: proper orthogonal decomposition, proper generalized decomposition, and reduced basis methodologies.} preprint = {http://preprints.sissa.it/xmlui/bitstream/handle/1963/35194/ECM_MOR.pdf?sequence=1&isAllowed=y

1 aChinesta, Francisco1 aHuerta, Antonio1 aRozza, Gianluigi1 aWillcox, Karen uhttps://math.sissa.it/node/1294900704nas a2200181 4500008004100000245009900041210006900140300001400209490000700223100001700230700002000247700002000267700002200287700002100309700002000330700002200350856015000372 2017 eng d00aNumerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts0 aNumerical modeling of hemodynamics scenarios of patientspecific a1373-13990 v161 aBallarin, F.1 aFaggiano, Elena1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi1 aIppolito, Sonia1 aScrofani, Roberto uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85015065851&doi=10.1007%2fs10237-017-0893-7&partnerID=40&md5=c388f20bd5de14187bad9ed7d9affbd001720nas a2200169 4500008004100000245012600041210006900167300001200236490000600248520107700254100002201331700001901353700001701372700002101389700002101410856011901431 2017 eng d00aPOD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder0 aPODGalerkin reduced order methods for CFD using Finite Volume Di a210-2360 v83 aVortex shedding around circular cylinders is a well known and studied phenomenon that appears in many engineering fields. In this work a Reduced Order Model (ROM) of the incompressible flow around a circular cylinder, built performing a Galerkin projection of the governing equations onto a lower dimensional space is presented. The reduced basis space is generated using a Proper Orthogonal Decomposition (POD) approach. In particular the focus is into (i) the correct reproduction of the pressure field, that in case of the vortex shedding phenomenon, is of primary importance for the calculation of the drag and lift coefficients; (ii) for this purpose the projection of the Governing equations (momentum equation and Poisson equation for pressure) is performed onto different reduced basis space for velocity and pressure, respectively; (iii) all the relevant modifications necessary to adapt standard finite element POD-Galerkin methods to a finite volume framework are presented. The accuracy of the reduced order model is assessed against full order results.

1 aStabile, Giovanni1 aHijazi, Saddam1 aMola, Andrea1 aLorenzi, Stefano1 aRozza, Gianluigi uhttps://math.sissa.it/publication/pod-galerkin-reduced-order-methods-cfd-using-finite-volume-discretisation-vortex02500nas a2200157 4500008004100000245005700041210005700098260001200155300000800167490000600175520201600181100001502197700002202212700002102234856008702255 2017 eng d00aReduced Basis Methods for Uncertainty Quantification0 aReduced Basis Methods for Uncertainty Quantification c08/2017 a8690 v53 aIn this work we review a reduced basis method for the solution of uncertainty quantification problems. Based on the basic setting of an elliptic partial differential equation with random input, we introduce the key ingredients of the reduced basis method, including proper orthogonal decomposition and greedy algorithms for the construction of the reduced basis functions, a priori and a posteriori error estimates for the reduced basis approximations, as well as its computational advantages and weaknesses in comparison with a stochastic collocation method [I. Babuška, F. Nobile, and R. Tempone, *SIAM Rev.*, 52 (2010), pp. 317--355]. We demonstrate its computational efficiency and accuracy for a benchmark problem with parameters ranging from a few to a few hundred dimensions. Generalizations to more complex models and applications to uncertainty quantification problems in risk prediction, evaluation of statistical moments, Bayesian inversion, and optimal control under uncertainty are also presented to illustrate how to use the reduced basis method in practice. Further challenges, advancements, and research opportunities are outlined.

Read More: http://epubs.siam.org/doi/abs/10.1137/151004550

POD–Galerkin reduced-order models (ROMs) for fluid-structure interaction problems (incompressible fluid and thin structure) are proposed in this paper. Both the high-fidelity and reduced-order methods are based on a Chorin-Temam operator-splitting approach. Two different reduced-order methods are proposed, which differ on velocity continuity condition, imposed weakly or strongly, respectively. The resulting ROMs are tested and compared on a representative haemodynamics test case characterized by wave propagation, in order to assess the capabilities of the proposed strategies.

1 aBallarin, F.1 aRozza, Gianluigi1 aMaday, Yvon1 aBenner, Peter1 aOhlberger, Mario1 aPatera, Anthony1 aRozza, Gianluigi1 aUrban, Karsten uhttps://math.sissa.it/node/1294802101nas a2200217 4500008004100000245018600041210006900227260003600296520123100332100002501563700001701588700002001605700001701625700001901642700002101661700002101682700002101703700001701724700001601741856012601757 2016 en d00aAdvances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives0 aAdvances in geometrical parametrization and reduced order models aCrete, GreecebECCOMASc06/20163 aSeveral problems in applied sciences and engineering require reduction techniques in order to allow computational tools to be employed in the daily practice, especially in iterative procedures such as optimization or sensitivity analysis. Reduced order methods need to face increasingly complex problems in computational mechanics, especially into a multiphysics setting. Several issues should be faced: stability of the approximation, efficient treatment of nonlinearities, uniqueness or possible bifurcations of the state solutions, proper coupling between fields, as well as offline-online computing, computational savings and certification of errors as measure of accuracy. Moreover, efficient geometrical parametrization techniques should be devised to efficiently face shape optimization problems, as well as shape reconstruction and shape assimilation problems. A related aspect deals with the management of parametrized interfaces in multiphysics problems, such as fluid-structure interaction problems, and also a domain decomposition based approach for complex parametrized networks. We present some illustrative industrial and biomedical problems as examples of recent advances on methodological developments.

1 aSalmoiraghi, Filippo1 aBallarin, F.1 aCorsi, Giovanni1 aMola, Andrea1 aTezzele, Marco1 aRozza, Gianluigi1 aPapadrakakis, M.1 aPapadopoulos, V.1 aStefanou, G.1 aPlevris, V. uhttps://math.sissa.it/publication/advances-geometrical-parametrization-and-reduced-order-models-and-methods-computational01710nas a2200193 4500008004100000245011900041210006900160260001400229520106200243100001701305700002001322700002001342700002101362700002201383700002001405700002201425700001801447856005101465 2016 en d00aA fast virtual surgery platform for many scenarios haemodynamics of patient-specific coronary artery bypass grafts0 afast virtual surgery platform for many scenarios haemodynamics o bSubmitted3 aA fast computational framework is devised to the study of several configurations of patient-specific coronary artery bypass grafts. This is especially useful to perform a sensitivity analysis of the haemodynamics for different flow conditions occurring in native coronary arteries and bypass grafts, the investigation of the progression of the coronary artery disease and the choice of the most appropriate surgical procedure. A complete pipeline, from the acquisition of patientspecific medical images to fast parametrized computational simulations, is proposed. Complex surgical configurations employed in the clinical practice, such as Y-grafts and sequential grafts, are studied. A virtual surgery platform based on model reduction of unsteady Navier Stokes equations for blood dynamics is proposed to carry out sensitivity analyses in a very rapid and reliable way. A specialized geometrical parametrization is employed to compare the effect of stenosis and anastomosis variation on the outcome of the surgery in several relevant cases.1 aBallarin, F.1 aFaggiano, Elena1 aManzoni, Andrea1 aRozza, Gianluigi1 aQuarteroni, Alfio1 aIppolito, Sonia1 aScrofani, Roberto1 aAntona, Carlo uhttp://urania.sissa.it/xmlui/handle/1963/3524001402nas a2200145 4500008004100000245011900041210006900160260007700229520081900306100002501125700001701150700001701167700002101184856005101205 2016 en d00aIsogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes0 aIsogeometric analysisbased reduced order modelling for incompres bSpringer, AMOS Advanced Modelling and Simulation in Engineering Sciences3 aIn this work we provide a combination of isogeometric analysis with reduced order modelling techniques, based on proper orthogonal decomposition, to guarantee computational reduction for the numerical model, and with free-form deformation, for versatile geometrical parametrization. We apply it to computational fluid dynamics problems considering a Stokes flow model. The proposed reduced order model combines efficient shape deformation and accurate and stable velocity and pressure approximation for incompressible viscous flows, computed with a reduced order method. Efficient offine-online computational decomposition is guaranteed in view of repetitive calculations for parametric design and optimization problems. Numerical test cases show the efficiency and accuracy of the proposed reduced order model.1 aSalmoiraghi, Filippo1 aBallarin, F.1 aHeltai, Luca1 aRozza, Gianluigi uhttp://urania.sissa.it/xmlui/handle/1963/3519900391nas a2200133 4500008004100000245003600041210003500077260001000112100002400122700002000146700002100166700001900187856005100206 2016 en d00aModel Order Reduction: a survey0 aModel Order Reduction a survey bWiley1 aChinesta, Francisco1 aHuerta, Antonio1 aRozza, Gianluigi1 aWillcox, Karen uhttp://urania.sissa.it/xmlui/handle/1963/3519401951nas a2200169 4500008004100000245009300041210006900134260001300203300000800216490000700224520142100231100002101652700001901673700001701692700002101709856005101730 2016 en d00aA multi-physics reduced order model for the analysis of Lead Fast Reactor single channel0 amultiphysics reduced order model for the analysis of Lead Fast R bElsevier a2080 v873 aIn this work, a Reduced Basis method, with basis functions sampled by a Proper Orthogonal Decomposition technique, has been employed to develop a reduced order model of a multi-physics parametrized Lead-cooled Fast Reactor single-channel. Being the first time that a reduced order model is developed in this context, the work focused on a methodological approach and the coupling between the neutronics and the heat transfer, where the thermal feedbacks on neutronics are explicitly taken into account, in time-invariant settings. In order to address the potential of such approach, two different kinds of varying parameters have been considered, namely one related to a geometric quantity (i.e., the inner radius of the fuel pellet) and one related to a physical quantity (i.e., the inlet lead velocity). The capabilities of the presented reduced order model (ROM) have been tested and compared with a high-fidelity finite element model (upon which the ROM has been constructed) on different aspects. In particular, the comparison focused on the system reactivity prediction (with and without thermal feedbacks on neutronics), the neutron flux and temperature field reconstruction, and on the computational time. The outcomes provided by the reduced order model are in good agreement with the high-fidelity finite element ones, and a computational speed-up of at least three orders of magnitude is achieved as well.1 aSartori, Alberto1 aCammi, Antonio1 aLuzzi, Lelio1 aRozza, Gianluigi uhttp://urania.sissa.it/xmlui/handle/1963/3519102271nas a2200145 4500008004100000245009200041210006900133260006800202520165800270100002101928700001901949700001701968700002101985856011902006 2016 en d00aPOD-Galerkin Method for Finite Volume Approximation of Navier-Stokes and RANS Equations0 aPODGalerkin Method for Finite Volume Approximation of NavierStok bComputer Methods in Applied Mechanics and Engineering, Elsevier3 aNumerical simulation of fluid flows requires important computational efforts but it is essential in engineering applications. Reduced Order Model (ROM) can be employed whenever fast simulations are required, or in general, whenever a trade-off between computational cost and solution accuracy is a preeminent issue as in process optimization and control. In this work, the efforts have been put to develop a ROM for Computational Fluid Dynamics (CFD) application based on Finite Volume approximation, starting from the results available in turbulent Reynold-Averaged Navier Stokes simulations in order to enlarge the application field of Proper Orthogonal Decomposition – Reduced Order Model (POD – ROM) technique to more industrial fields. The approach is tested in the classic benchmark of the numerical simulation of the 2D lid-driven cavity. In particular, two simulations at Re = 103 and Re = 105 have been considered in order to assess both a laminar and turbulent case. Some quantities have been compared with the Full Order Model in order to assess the performance of the proposed ROM procedure i.e., the kinetic energy of the system and the reconstructed quantities of interest (velocity, pressure and turbulent viscosity). In addition, for the laminar case, the comparison between the ROM steady-state solution and the data available in literature has been presented. The results have turned out to be very satisfactory both for the accuracy and the computational times. As a major outcome, the approach turns out not to be affected by the energy blow up issue characterizing the results obtained by classic turbulent POD-Galerkin methods.1 aLorenzi, Stefano1 aCammi, Antonio1 aLuzzi, Lelio1 aRozza, Gianluigi uhttps://math.sissa.it/publication/pod-galerkin-method-finite-volume-approximation-navier-stokes-and-rans-equations01491nas a2200121 4500008004100000245010500041210007100146260001000217520097200227100001701199700002101216856013201237 2016 en d00aPOD–Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems0 aPOD–Galerkin monolithic reduced order models for parametrized fl bWiley3 aIn this paper we propose a monolithic approach for reduced order modelling of parametrized fluid-structure interaction problems based on a proper orthogonal decomposition (POD)–Galerkin method. Parameters of the problem are related to constitutive properties of the fluid or structural problem, or to geometrical parameters related to the domain configuration at the initial time. We provide a detailed description of the parametrized formulation of the multiphysics problem in its components, together with some insights on how to obtain an offline-online efficient computational procedure through the approximation of parametrized nonlinear tensors. Then, we present the monolithic POD–Galerkin method for the online computation of the global structural displacement, fluid velocity and pressure of the coupled problem. Finally, we show some numerical results to highlight the capabilities of the proposed reduced order method and its computational performances1 aBallarin, F.1 aRozza, Gianluigi uhttps://math.sissa.it/publication/pod%E2%80%93galerkin-monolithic-reduced-order-models-parametrized-fluid-structure-interaction01691nas a2200169 4500008004100000245008700041210006900128260001800197300000600215490000600221520116500227100002101392700001901413700001701432700002101449856005101470 2016 en d00aA Reduced Basis Approach for Modeling the Movement of Nuclear Reactor Control Rods0 aReduced Basis Approach for Modeling the Movement of Nuclear Reac bASMEc02/2016 a80 v23 aThis work presents a reduced order model (ROM) aimed at simulating nuclear reactor control rods movement and featuring fast-running prediction of reactivity and neutron flux distribution as well. In particular, the reduced basis (RB) method (built upon a high-fidelity finite element (FE) approximation) has been employed. The neutronics has been modeled according to a parametrized stationary version of the multigroup neutron diffusion equation, which can be formulated as a generalized eigenvalue problem. Within the RB framework, the centroidal Voronoi tessellation is employed as a sampling technique due to the possibility of a hierarchical parameter space exploration, without relying on a “classical” a posteriori error estimation, and saving an important amount of computational time in the offline phase. Here, the proposed ROM is capable of correctly predicting, with respect to the high-fidelity FE approximation, both the reactivity and neutron flux shape. In this way, a computational speedup of at least three orders of magnitude is achieved. If a higher precision is required, the number of employed basis functions (BFs) must be increased.1 aSartori, Alberto1 aCammi, Antonio1 aLuzzi, Lelio1 aRozza, Gianluigi uhttp://urania.sissa.it/xmlui/handle/1963/3519201826nas a2200145 4500008004100000245012700041210006900168260001600237520129800253100002101551700001901572700001701591700002101608856005101629 2016 en d00aReduced basis approaches in time-dependent noncoercive settings for modelling the movement of nuclear reactor control rods0 aReduced basis approaches in timedependent noncoercive settings f bSISSAc20163 aIn this work, two approaches, based on the certified Reduced Basis method, have been developed for simulating the movement of nuclear reactor control rods, in time-dependent non-coercive settings featuring a 3D geometrical framework. In particular, in a first approach, a piece-wise affine transformation based on subdomains division has been implemented for modelling the movement of one control rod. In the second approach, a “staircase” strategy has been adopted for simulating the movement of all the three rods featured by the nuclear reactor chosen as case study. The neutron kinetics has been modelled according to the so-called multi-group neutron diffusion, which, in the present case, is a set of ten coupled parametrized parabolic equations (two energy groups for the neutron flux, and eight for the precursors). Both the reduced order models, developed according to the two approaches, provided a very good accuracy compared with high-fidelity results, assumed as “truth” solutions. At the same time, the computational speed-up in the Online phase, with respect to the fine “truth” finite element discretization, achievable by both the proposed approaches is at least of three orders of magnitude, allowing a real-time simulation of the rod movement and control.

1 aSartori, Alberto1 aCammi, Antonio1 aLuzzi, Lelio1 aRozza, Gianluigi uhttp://urania.sissa.it/xmlui/handle/1963/3496301901nas a2200157 4500008004100000245012000041210006900161260002200230300000800252490000700260520128900267100002101556700002201577700002101599856012301620 2016 en d00aReduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries0 aReduced basis method and domain decomposition for elliptic probl bElsevierc01/2016 a4300 v713 aThe aim of this work is to solve parametrized partial differential equations in computational domains represented by networks of repetitive geometries by combining reduced basis and domain decomposition techniques. The main idea behind this approach is to compute once, locally and for few reference shapes, some representative finite element solutions for different values of the parameters and with a set of different suitable boundary conditions on the boundaries: these functions will represent the basis of a reduced space where the global solution is sought for. The continuity of the latter is assured by a classical domain decomposition approach. Test results on Poisson problem show the flexibility of the proposed method in which accuracy and computational time may be tuned by varying the number of reduced basis functions employed, or the set of boundary conditions used for defining locally the basis functions. The proposed approach simplifies the pre-computation of the reduced basis space by splitting the global problem into smaller local subproblems. Thanks to this feature, it allows dealing with arbitrarily complex network and features more flexibility than a classical global reduced basis approximation where the topology of the geometry is fixed.1 aIapichino, Laura1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttps://math.sissa.it/publication/reduced-basis-method-and-domain-decomposition-elliptic-problems-networks-and-complex01364nam a2200229 4500008004100000020002200041022001400063245008400077210006900161250000600230260002600236300000800262520053600270653003000806653002800836653004800864653004500912100002200957700002100979700002001000856011401020 2015 eng d a978-3-319-22469-5 a2191-820100aCertified Reduced Basis Methods for Parametrized Partial Differential Equations0 aCertified Reduced Basis Methods for Parametrized Partial Differe a1 aSwitzerlandbSpringer a1353 aThis book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.

10aa posteriori error bounds10aempirical interpolation10aparametrized partial differential equations10areduced basis methods, greedy algorithms1 aHesthaven, Jan, S1 aRozza, Gianluigi1 aStamm, Benjamin uhttps://math.sissa.it/publication/certified-reduced-basis-methods-parametrized-partial-differential-equations01813nas a2200169 4500008004100000245015600041210006900197520118400266100001701450700002001467700002001487700002001507700002201527700002101549700002201570856005101592 2015 en d00aFast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization0 aFast simulations of patientspecific haemodynamics of coronary ar3 aIn this work a reduced-order computational framework for the study of haemodynamics in three-dimensional patient-specific configurations of coronary artery bypass grafts dealing with a wide range of scenarios is proposed. We combine several efficient algorithms to face at the same time both the geometrical complexity involved in the description of the vascular network and the huge computational cost entailed by time dependent patient-specific flow simulations. Medical imaging procedures allow to reconstruct patient-specific configurations from clinical data. A centerlines-based parametrization is proposed to efficiently handle geometrical variations. POD–Galerkin reduced-order models are employed to cut down large computational costs. This computational framework allows to characterize blood flows for different physical and geometrical variations relevant in the clinical practice, such as stenosis factors and anastomosis variations, in a rapid and reliable way. Several numerical results are discussed, highlighting the computational performance of the proposed framework, as well as its capability to perform sensitivity analysis studies, so far out of reach.1 aBallarin, F.1 aFaggiano, Elena1 aIppolito, Sonia1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi1 aScrofani, Roberto uhttp://urania.sissa.it/xmlui/handle/1963/3462300674nas a2200169 4500008004100000245013400041210006900175300001400244490000700258100001800265700002100283700002000304700002100324700001900345700001900364856012100383 2015 eng d00aModel order reduction of parameterized systems ({MoRePaS}): Preface to the special issue of advances in computational mathematics0 aModel order reduction of parameterized systems MoRePaS Preface t a955–9600 v411 aBenner, Peter1 aOhlberger, Mario1 aPatera, Anthony1 aRozza, Gianluigi1 aSorensen, D.C.1 aUrban, Karsten uhttps://math.sissa.it/publication/model-order-reduction-parameterized-systems-morepas-preface-special-issue-advances01516nas a2200133 4500008004100000245012100041210006900162260001300231520102900244100002101273700001501294700002201309856005101331 2015 en d00aMultilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations0 aMultilevel and weighted reduced basis method for stochastic opti bSpringer3 aIn this paper we develop and analyze a multilevel weighted reduced basis method for solving stochastic optimal control problems constrained by Stokes equations. We prove the analytic regularity of the optimal solution in the probability space under certain assumptions on the random input data. The finite element method and the stochastic collocation method are employed for the numerical approximation of the problem in the deterministic space and the probability space, respectively, resulting in many large-scale optimality systems to solve. In order to reduce the unaffordable computational effort, we propose a reduced basis method using a multilevel greedy algorithm in combination with isotropic and anisotropic sparse-grid techniques. A weighted a posteriori error bound highlights the contribution stemming from each method. Numerical tests on stochastic dimensions ranging from 10 to 100 demonstrate that our method is very efficient, especially for solving high-dimensional and large-scale optimization problems.1 aRozza, Gianluigi1 aChen, Peng1 aQuarteroni, Alfio uhttp://urania.sissa.it/xmlui/handle/1963/3449102038nas a2200217 4500008004100000022001400041245010200055210006900157490003500226520122900261653002501490653002101515653002501536653002701561653002501588653001601613100002201629700002101651700002201672856012601694 2015 eng d a1019-716800aReduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system0 aReduced basis approximation and aposteriori error estimation for0 vspecial issue for MoRePaS 20123 aThe coupling of a free flow with a flow through porous media has many potential applications in several fields related with computational science and engineering, such as blood flows, environmental problems or food technologies. We present a reduced basis method for such coupled problems. The reduced basis method is a model order reduction method applied in the context of parametrized systems. Our approach is based on a heterogeneous domain decomposition formulation, namely the Stokes-Darcy problem. Thanks to an offline/online-decomposition, computational times can be drastically reduced. At the same time the induced error can be bounded by fast evaluable a-posteriori error bounds. In the offline-phase the proposed algorithms make use of the decomposed problem structure. Rigorous a-posteriori error bounds are developed, indicating the accuracy of certain lifting operators used in the offline-phase as well as the accuracy of the reduced coupled system. Also, a strategy separately bounding pressure and velocity errors is extended. Numerical experiments dealing with groundwater flow scenarios demonstrate the efficiency of the approach as well as the limitations regarding a-posteriori error estimation.

10aDomain decomposition10aError estimation10aNon-coercive problem10aPorous medium equation10aReduced basis method10aStokes flow1 aMartini, Immanuel1 aRozza, Gianluigi1 aHaasdonk, Bernard uhttps://math.sissa.it/publication/reduced-basis-approximation-and-posteriori-error-estimation-coupled-stokes-darcy-system01082nas a2200133 4500008004100000245009800041210006900139300001400208490000800222520055000230100001900780700002100799856012800820 2015 eng d00aReduced basis approximation of parametrized advection-diffusion PDEs with high Péclet number0 aReduced basis approximation of parametrized advectiondiffusion P a419–4260 v1033 aIn this work we show some results about the reduced basis approximation of advection dominated parametrized problems, i.e. advection-diffusion problems with high Péclet number. These problems are of great importance in several engineering applications and it is well known that their numerical approximation can be affected by instability phenomena. In this work we compare two possible stabilization strategies in the framework of the reduced basis method, by showing numerical results obtained for a steady advection-diffusion problem.

1 aPacciarini, P.1 aRozza, Gianluigi uhttps://math.sissa.it/publication/reduced-basis-approximation-parametrized-advection-diffusion-pdes-high-p%C3%A9clet-number01231nas a2200145 4500008004100000245010300041210006900144300001400213490000700227520066400234100002000898700002000918700002100938856012600959 2015 eng d00aReduced basis approximation of parametrized optimal flow control problems for the Stokes equations0 aReduced basis approximation of parametrized optimal flow control a319–3360 v693 aThis paper extends the reduced basis method for the solution of parametrized optimal control problems presented in Negri et al. (2013) to the case of noncoercive (elliptic) equations, such as the Stokes equations. We discuss both the theoretical properties-with particular emphasis on the stability of the resulting double nested saddle-point problems and on aggregated error estimates-and the computational aspects of the method. Then, we apply it to solve a benchmark vorticity minimization problem for a parametrized bluff body immersed in a two or a three-dimensional flow through boundary control, demonstrating the effectivity of the methodology.

1 aNegri, Federico1 aManzoni, Andrea1 aRozza, Gianluigi uhttps://math.sissa.it/publication/reduced-basis-approximation-parametrized-optimal-flow-control-problems-stokes-equations00682nas a2200145 4500008004100000245009900041210006900140260001000209520018600219100001700405700002000422700002200442700002100464856005100485 2015 en d00aSupremizer stabilization of POD-Galerkin approximation of parametrized Navier-Stokes equations0 aSupremizer stabilization of PODGalerkin approximation of paramet bWiley3 aIn this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with low Reynolds number.1 aBallarin, F.1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttp://urania.sissa.it/xmlui/handle/1963/3470102162nas a2200133 4500008004100000245009400041210006900135260001300204520170200217100001501919700002201934700002101956856005101977 2014 en d00aComparison between reduced basis and stochastic collocation methods for elliptic problems0 aComparison between reduced basis and stochastic collocation meth bSpringer3 aThe stochastic collocation method (Babuška et al. in SIAM J Numer Anal 45(3):1005-1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411-2442, 2008a; SIAM J Numer Anal 46(5):2309-2345, 2008b; Xiu and Hesthaven in SIAM J Sci Comput 27(3):1118-1139, 2005) has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al. in Comptes Rendus Mathematique 335(3):289-294, 2002; Patera and Rozza in Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch Comput Methods Eng 15(3):229-275, 2008), primarily developed for solving parametric systems, has been recently used to deal with stochastic problems (Boyaval et al. in Comput Methods Appl Mech Eng 198(41-44):3187-3206, 2009; Arch Comput Methods Eng 17:435-454, 2010). In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: (1), convergence results of the approximation error; (2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions O (1) to moderate dimensions O (10) and to high dimensions O (100). The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.1 aChen, Peng1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttp://urania.sissa.it/xmlui/handle/1963/3472702011nas a2200241 4500008004100000245013600041210006900177260002200246300000800268490000700276520123100283100002101514700001901535700001901554700001901573700001701592700002701609700002001636700002301656700002101679700001801700856005101718 2014 en d00aComparison of a Modal Method and a Proper Orthogonal Decomposition approach for multi-group time-dependent reactor spatial kinetics0 aComparison of a Modal Method and a Proper Orthogonal Decompositi bElsevierc09/2014 a2290 v713 aIn this paper, two modelling approaches based on a Modal Method (MM) and on the Proper Orthogonal Decomposition (POD) technique, for developing a control-oriented model of nuclear reactor spatial kinetics, are presented and compared. Both these methods allow developing neutronics description by means of a set of ordinary differential equations. The comparison of the outcomes provided by the two approaches focuses on the capability of evaluating the reactivity and the neutron flux shape in different reactor configurations, with reference to a TRIGA Mark II reactor. The results given by the POD-based approach are higher-fidelity with respect to the reference solution than those computed according to the MM-based approach, in particular when the perturbation concerns a reduced region of the core. If the perturbation is homogeneous throughout the core, the two approaches allow obtaining comparable accuracy results on the quantities of interest. As far as the computational burden is concerned, the POD approach ensures a better efficiency rather than direct Modal Method, thanks to the ability of performing a longer computation in the preprocessing that leads to a faster evaluation during the on-line phase.

1 aSartori, Alberto1 aBaroli, Davide1 aCammi, Antonio1 aChiesa, Davide1 aLuzzi, Lelio1 aPonciroli, Roberto, R.1 aPrevitali, Ezio1 aRicotti, Marco, E.1 aRozza, Gianluigi1 aSisti, Monica uhttp://urania.sissa.it/xmlui/handle/1963/3503901439nas a2200133 4500008004100000245015900041210006900200300001400269490000700283520085800290100001401148700002101162856012201183 2014 eng d00aEfficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid–structure interaction coupling problems0 aEfficient geometrical parametrisation techniques of interfaces f a158–1690 v283 aWe present some recent advances and improvements in shape parametrisation techniques of interfaces for reduced-order modelling with special attention to fluid–structure interaction problems and the management of structural deformations, namely, to represent them into a low-dimensional space (by control points). This allows to reduce the computational effort, and to significantly simplify the (geometrical) deformation procedure, leading to more efficient and fast reduced-order modelling applications in this kind of problems. We propose an efficient methodology to select the geometrical control points for the radial basis functions based on a modal greedy algorithm to improve the computational efficiency in view of more complex fluid–structure applications in several fields. The examples provided deal with aeronautics and wind engineering.1 aForti, D.1 aRozza, Gianluigi uhttps://math.sissa.it/publication/efficient-geometrical-parametrisation-techniques-interfaces-reduced-order-modelling01600nas a2200133 4500008004100000245010100041210006900142260001900211490000800230520099000238653009201228100002101320856012501341 2014 eng d00aFundamentals of Reduced Basis Method for problems governed by parametrized PDEs and applications0 aFundamentals of Reduced Basis Method for problems governed by pa aWienbSpringer0 v5543 aIn this chapter we consider Reduced Basis (RB) approximations of parametrized Partial Differential Equations (PDEs). The the idea behind RB is to decouple the generation and projection stages (Offline/Online computational procedures) of the approximation process in order to solve parametrized PDEs in a fast, inexpensive and reliable way. The RB method, especially applied to 3D problems, allows great computational savings with respect to the classical Galerkin Finite Element (FE) Method. The standard FE method is typically ill suited to (i) iterative contexts like optimization, sensitivity analysis and many-queries in general, and (ii) real time evaluation. We consider for simplicity coercive PDEs. We discuss all the steps to set up a RB approximation, either from an analytical and a numerical point of view. Then we present an application of the RB method to a steady thermal conductivity problem in heat transfer with emphasis on geometrical and physical parameters.

10areduced basis method, linear elasticity, heat transfer, error bounds, parametrized PDEs1 aRozza, Gianluigi uhttps://math.sissa.it/publication/fundamentals-reduced-basis-method-problems-governed-parametrized-pdes-and-applications01078nas a2200145 4500008004100000245007200041210006900113300001400182490000800196520057300204100001600777700002100793700002100814856009700835 2014 eng d00aAn improvement on geometrical parameterizations by transfinite maps0 aimprovement on geometrical parameterizations by transfinite maps a263–2680 v3523 aWe present a method to generate a non-affine transfinite map from a given reference domain to a family of deformed domains. The map is a generalization of the Gordon-Hall transfinite interpolation approach. It is defined globally over the reference domain. Once we have computed some functions over the reference domain, the map can be generated by knowing the parametric expressions of the boundaries of the deformed domain. Being able to define a suitable map from a reference domain to a desired deformation is useful for the management of parameterized geometries.1 aJäggli, C.1 aIapichino, Laura1 aRozza, Gianluigi uhttps://math.sissa.it/publication/improvement-geometrical-parameterizations-transfinite-maps01646nas a2200145 4500008004100000245007300041210006900114260001300183520112000196100001801316700002001334700002201354700002101376856010301397 2014 en d00aModel Order Reduction in Fluid Dynamics: Challenges and Perspectives0 aModel Order Reduction in Fluid Dynamics Challenges and Perspecti bSpringer3 aThis chapter reviews techniques of model reduction of fluid dynamics systems. Fluid systems are known to be difficult to reduce efficiently due to several reasons. First of all, they exhibit strong nonlinearities - which are mainly related either to nonlinear convection terms and/or some geometric variability - that often cannot be treated by simple linearization. Additional difficulties arise when attempting model reduction of unsteady flows, especially when long-term transient behavior needs to be accurately predicted using reduced order models and more complex features, such as turbulence or multiphysics phenomena, have to be taken into consideration. We first discuss some general principles that apply to many parametric model order reduction problems, then we apply them on steady and unsteady viscous flows modelled by the incompressible Navier-Stokes equations. We address questions of inf-sup stability, certification through error estimation, computational issues and-in the unsteady case - long-time stability of the reduced model. Moreover, we provide an extensive list of literature references.1 aLassila, Toni1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttps://math.sissa.it/publication/model-order-reduction-fluid-dynamics-challenges-and-perspectives00562nas a2200133 4500008004100000245010000041210006900141300001000210100002100220700002200241700002100263700002100284856012300305 2014 eng d00aReduced basis method for the Stokes equations in decomposable domains using greedy optimization0 aReduced basis method for the Stokes equations in decomposable do a1–71 aIapichino, Laura1 aQuarteroni, Alfio1 aRozza, Gianluigi1 aVolkwein, Stefan uhttps://math.sissa.it/publication/reduced-basis-method-stokes-equations-decomposable-domains-using-greedy-optimization01874nam a2200181 4500008004100000022002200041245006700063210006700130250000600197260002100203300000800224490000600232520123600238653007801474100002201552700002101574856009701595 2014 eng d a978-3-319-02089-100aReduced Order Methods for Modeling and Computational Reduction0 aReduced Order Methods for Modeling and Computational Reduction a1 aMilanobSpringer a3340 v93 aThis monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics.

Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects.

This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

10areduced order methods, MOR, ROM, POD, RB, greedy, CFD, Numerical Analysis1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttps://math.sissa.it/publication/reduced-order-methods-modeling-and-computational-reduction01688nas a2200193 4500008004100000020002000041245009500061210006900156250004400225260008500269300002800354520096400382100002101346700001901367700001901386700001701405700002101422856005101443 2014 en d a978-079184595-000aA reduced order model for multi-group time-dependent parametrized reactor spatial kinetics0 areduced order model for multigroup timedependent parametrized re aAmerican Society Mechanical Engineering aPrague, Czech RepublicbAmerican Society of Mechanical Engineers (ASME)c07/2014 aV005T17A048-V005T17A0483 a

In this work, a Reduced Order Model (ROM) for multigroup time-dependent parametrized reactor spatial kinetics is presented. The Reduced Basis method (built upon a high-fidelity "truth" finite element approximation) has been applied to model the neutronics behavior of a parametrized system composed by a control rod surrounded by fissile material. The neutron kinetics has been described by means of a parametrized multi-group diffusion equation where the height of the control rod (i.e., how much the rod is inserted) plays the role of the varying parameter. In order to model a continuous movement of the rod, a piecewise affine transformation based on subdomain division has been implemented. The proposed ROM is capable to efficiently reproduce the neutron flux distribution allowing to take into account the spatial effects induced by the movement of the control rod with a computational speed-up of 30000 times, with respect to the "truth" model.

1 aSartori, Alberto1 aBaroli, Davide1 aCammi, Antonio1 aLuzzi, Lelio1 aRozza, Gianluigi uhttp://urania.sissa.it/xmlui/handle/1963/3512301619nas a2200145 4500008004100000245010700041210006900148260001300217520111600230100001701346700002001363700002101383700001801404856005101422 2014 en d00aShape Optimization by Free-Form Deformation: Existence Results and Numerical Solution for Stokes Flows0 aShape Optimization by FreeForm Deformation Existence Results and bSpringer3 aShape optimization problems governed by PDEs result from many applications in computational fluid dynamics. These problems usually entail very large computational costs and require also a suitable approach for representing and deforming efficiently the shape of the underlying geometry, as well as for computing the shape gradient of the cost functional to be minimized. Several approaches based on the displacement of a set of control points have been developed in the last decades, such as the so-called free-form deformations. In this paper we present a new theoretical result which allows to recast free-form deformations into the general class of perturbation of identity maps, and to guarantee the compactness of the set of admissible shapes. Moreover, we address both a general optimization framework based on the continuous shape gradient and a numerical procedure for solving efficiently three-dimensional optimal design problems. This framework is applied to the optimal design of immersed bodies in Stokes flows, for which we consider the numerical solution of a benchmark case study from literature.1 aBallarin, F.1 aManzoni, Andrea1 aRozza, Gianluigi1 aSalsa, Sandro uhttp://urania.sissa.it/xmlui/handle/1963/3469801197nas a2200133 4500008004100000245007800041210006900119300001100188490000800199520070800207100001900915700002100934856010800955 2014 eng d00aStabilized reduced basis method for parametrized advection-diffusion PDEs0 aStabilized reduced basis method for parametrized advectiondiffus a1–180 v2743 aIn this work, we propose viable and efficient strategies for the stabilization of the reduced basis approximation of an advection dominated problem. In particular, we investigate the combination of a classic stabilization method (SUPG) with the Offline-Online structure of the RB method. We explain why the stabilization is needed in both stages and we identify, analytically and numerically, which are the drawbacks of a stabilization performed only during the construction of the reduced basis (i.e. only in the Offline stage). We carry out numerical tests to assess the performances of the ``double'' stabilization both in steady and unsteady problems, also related to heat transfer phenomena.

1 aPacciarini, P.1 aRozza, Gianluigi uhttps://math.sissa.it/publication/stabilized-reduced-basis-method-parametrized-advection-diffusion-pdes01104nas a2200121 4500008004100000245016100041210006900202300001600271520058500287100001900872700002100891856007000912 2014 eng d00aStabilized reduced basis method for parametrized scalar advection-diffusion problems at higher Péclet number: Roles of the boundary layers and inner fronts0 aStabilized reduced basis method for parametrized scalar advectio a5614–56243 aAdvection-dominated problems, which arise in many engineering situations, often require a fast and reliable approximation of the solution given some parameters as inputs. In this work we want to investigate the coupling of the reduced basis method - which guarantees rapidity and reliability - with some classical stabilization techiques to deal with the advection-dominated condition. We provide a numerical extension of the results presented in [1], focusing in particular on problems with curved boundary layers and inner fronts whose direction depends on the parameter.

1 aPacciarini, P.1 aRozza, Gianluigi uhttps://infoscience.epfl.ch/record/203327/files/ECCOMAS_PP_GR.pdf01557nas a2200133 4500008004100000245009400041210006900135260001700204520109300221100001501314700002201329700002101351856005101372 2014 en d00aA weighted empirical interpolation method: A priori convergence analysis and applications0 aweighted empirical interpolation method A priori convergence ana bEDP Sciences3 aWe extend the classical empirical interpolation method [M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Compt. Rend. Math. Anal. Num. 339 (2004) 667-672] to a weighted empirical interpolation method in order to approximate nonlinear parametric functions with weighted parameters, e.g. random variables obeying various probability distributions. A priori convergence analysis is provided for the proposed method and the error bound by Kolmogorov N-width is improved from the recent work [Y. Maday, N.C. Nguyen, A.T. Patera and G.S.H. Pau, A general, multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8 (2009) 383-404]. We apply our method to geometric Brownian motion, exponential Karhunen-Loève expansion and reduced basis approximation of non-affine stochastic elliptic equations. We demonstrate its improved accuracy and efficiency over the empirical interpolation method, as well as sparse grid stochastic collocation method.1 aChen, Peng1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttp://urania.sissa.it/xmlui/handle/1963/3502101890nas a2200145 4500008004100000245011800041210006900159260001300228520137300241653003501614100001801649700002001667700002101687856003601708 2013 en d00aA combination between the reduced basis method and the ANOVA expansion: On the computation of sensitivity indices0 acombination between the reduced basis method and the ANOVA expan bElsevier3 aWe consider a method to efficiently evaluate in a real-time context an output based on the numerical solution of a partial differential equation depending on a large number of parameters. We state a result allowing to improve the computational performance of a three-step RB-ANOVA-RB method. This is a combination of the reduced basis (RB) method and the analysis of variations (ANOVA) expansion, aiming at compressing the parameter space without affecting the accuracy of the output. The idea of this method is to compute a first (coarse) RB approximation of the output of interest involving all the parameter components, but with a large tolerance on the a posteriori error estimate; then, we evaluate the ANOVA expansion of the output and freeze the least important parameter components; finally, considering a restricted model involving just the retained parameter components, we compute a second (fine) RB approximation with a smaller tolerance on the a posteriori error estimate. The fine RB approximation entails lower computational costs than the coarse one, because of the reduction of parameter dimensionality. Our result provides a criterion to avoid the computation of those terms in the ANOVA expansion that are related to the interaction between parameters in the bilinear form, thus making the RB-ANOVA-RB procedure computationally more feasible.

10aPartial differential equations1 aDevaud, Denis1 aManzoni, Andrea1 aRozza, Gianluigi uhttp://hdl.handle.net/1963/738901314nas a2200121 4500008004100000245007900041210006900120520083000189100002001019700002201039700002101061856011001082 2013 eng d00aFree Form Deformation Techniques Applied to 3D Shape Optimization Problems0 aFree Form Deformation Techniques Applied to 3D Shape Optimizatio3 aThe purpose of this work is to analyse and study an efficient parametrization technique for a 3D shape optimization problem. After a brief review of the techniques and approaches already available in literature, we recall the Free Form Deformation parametrization, a technique which proved to be efficient and at the same time versatile, allowing to manage complex shapes even with few parameters. We tested and studied the FFD technique by establishing a path, from the geometry definition, to the method implementation, and finally to the simulation and to the optimization of the shape. In particular, we have studied a bulb and a rudder of a race sailing boat as model applications, where we have tested a complete procedure from Computer-Aided-Design to build the geometrical model to discretization and mesh generation.1 aKoshakji, Anwar1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttps://math.sissa.it/publication/free-form-deformation-techniques-applied-3d-shape-optimization-problems02183nas a2200145 4500008004100000245015300041210006900194260001300263520163200276653003401908100002101942700001801963700002001981856003602001 2013 en d00aReduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants0 aReduced basis approximation and a posteriori error estimation fo bSpringer3 aIn this paper we review and we extend the reduced basis approximation and a posteriori error estimation for steady Stokes flows in a ffinely parametrized geometries, focusing on the role played by the Brezzi\\\'s and Babu ska\\\'s stability constants. The crucial ingredients of the methodology are a Galerkin projection onto a low-dimensional space of basis functions properly selected, an a ne parametric dependence enabling to perform competitive Off ine-Online splitting in the computational\\r\\nprocedure and a rigorous a posteriori error estimation on eld variables.\\r\\nThe combination of these three factors yields substantial computational savings which are at the basis of an e fficient model order reduction, ideally suited for real-time simulation and many-query contexts (e.g. optimization, control or parameter identi cation). In particular, in this work we focus on i) the stability of the reduced basis approximation based on the Brezzi\\\'s saddle point theory and the introduction of a supremizer operator on the pressure terms, ii) a rigorous a posteriori error estimation procedure for velocity and pressure elds based on the Babu ska\\\'s inf-sup constant (including residuals calculations), iii) the computation of a lower bound of the stability constant, and iv) di erent options for the reduced basis spaces construction. We present some illustrative results for both\\r\\ninterior and external steady Stokes flows in parametrized geometries representing two parametrized classical Poiseuille and Couette \\r\\nflows, a channel contraction and a simple flow control problem around a curved obstacle.10aparametrized Stokes equations1 aRozza, Gianluigi1 aHuynh, Phuong1 aManzoni, Andrea uhttp://hdl.handle.net/1963/633900527nas a2200121 4500008004100000245011700041210006900158300001100227490000700238100001800245700002100263856012100284 2013 eng d00aReduced Basis Approximation for the Structural-Acoustic Design based on Energy Finite Element Analysis (RB-EFEA)0 aReduced Basis Approximation for the StructuralAcoustic Design ba a98-1150 v481 aDevaud, Denis1 aRozza, Gianluigi uhttps://math.sissa.it/publication/reduced-basis-approximation-structural-acoustic-design-based-energy-finite-element01697nas a2200157 4500008004100000245007600041210006900117300001800186490000700204520113900211100002001350700002101370700002001391700002201411856010601433 2013 eng d00aReduced basis method for parametrized elliptic optimal control problems0 aReduced basis method for parametrized elliptic optimal control p aA2316–A23400 v353 aWe propose a suitable model reduction paradigm-the certified reduced basis method (RB)-for the rapid and reliable solution of parametrized optimal control problems governed by partial differential equations. In particular, we develop the methodology for parametrized quadratic optimization problems with elliptic equations as a constraint and infinite-dimensional control variable. First, we recast the optimal control problem in the framework of saddle-point problems in order to take advantage of the already developed RB theory for Stokes-type problems. Then, the usual ingredients of the RB methodology are called into play: a Galerkin projection onto a low-dimensional space of basis functions properly selected by an adaptive procedure; an affine parametric dependence enabling one to perform competitive offline-online splitting in the computational procedure; and an efficient and rigorous a posteriori error estimate on the state, control, and adjoint variables as well as on the cost functional. Finally, we address some numerical tests that confirm our theoretical results and show the efficiency of the proposed technique.1 aNegri, Federico1 aRozza, Gianluigi1 aManzoni, Andrea1 aQuarteroni, Alfio uhttps://math.sissa.it/publication/reduced-basis-method-parametrized-elliptic-optimal-control-problems00544nas a2200133 4500008004100000245009200041210006900133260001000202100001800212700002000230700002200250700002100272856011700293 2013 en d00aA Reduced Computational and Geometrical Framework for Inverse Problems in Haemodynamics0 aReduced Computational and Geometrical Framework for Inverse Prob bSISSA1 aLassila, Toni1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttps://math.sissa.it/publication/reduced-computational-and-geometrical-framework-inverse-problems-haemodynamics00564nas a2200133 4500008004100000245010500041210006900146260001000215100001800225700002000243700002200263700002100285856012400306 2013 en d00aA reduced-order strategy for solving inverse Bayesian identification problems in physiological flows0 areducedorder strategy for solving inverse Bayesian identificatio bSISSA1 aLassila, Toni1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttps://math.sissa.it/publication/reduced-order-strategy-solving-inverse-bayesian-identification-problems-physiological00486nas a2200121 4500008004100000245007900041210006900120260001000189100001800199700002000217700002100237856010600258 2013 en d00aReduction Strategies for Shape Dependent Inverse Problems in Haemodynamics0 aReduction Strategies for Shape Dependent Inverse Problems in Hae bSISSA1 aLassila, Toni1 aManzoni, Andrea1 aRozza, Gianluigi uhttps://math.sissa.it/publication/reduction-strategies-shape-dependent-inverse-problems-haemodynamics01505nas a2200145 4500008004100000245009700041210006900138300001600207490000700223520095300230100001501183700002201198700002101220856011801241 2013 eng d00aStochastic optimal robin boundary control problems of advection-dominated elliptic equations0 aStochastic optimal robin boundary control problems of advectiond a2700–27220 v513 aIn this work we deal with a stochastic optimal Robin boundary control problem constrained by an advection-diffusion-reaction elliptic equation with advection-dominated term. We assume that the uncertainty comes from the advection field and consider a stochastic Robin boundary condition as control function. A stochastic saddle point system is formulated and proved to be equivalent to the first order optimality system for the optimal control problem, based on which we provide the existence and uniqueness of the optimal solution as well as some results on stochastic regularity with respect to the random variables. Stabilized finite element approximations in physical space and collocation approximations in stochastic space are applied to discretize the optimality system. A global error estimate in the product of physical space and stochastic space for the numerical approximation is derived. Illustrative numerical experiments are provided.1 aChen, Peng1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttps://math.sissa.it/publication/stochastic-optimal-robin-boundary-control-problems-advection-dominated-elliptic01371nas a2200145 4500008004100000245010300041210006900144300001600213490000700229520080500236100001501041700002201056700002101078856012601099 2013 eng d00aA weighted reduced basis method for elliptic partial differential equations with random input data0 aweighted reduced basis method for elliptic partial differential a3163–31850 v513 aIn this work we propose and analyze a weighted reduced basis method to solve elliptic partial differential equations (PDEs) with random input data. The PDEs are first transformed into a weighted parametric elliptic problem depending on a finite number of parameters. Distinctive importance of the solution at different values of the parameters is taken into account by assigning different weights to the samples in the greedy sampling procedure. A priori convergence analysis is carried out by constructive approximation of the exact solution with respect to the weighted parameters. Numerical examples are provided for the assessment of the advantages of the proposed method over the reduced basis method and the stochastic collocation method in both univariate and multivariate stochastic problems.1 aChen, Peng1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttps://math.sissa.it/publication/weighted-reduced-basis-method-elliptic-partial-differential-equations-random-input-data01501nas a2200157 4500008004100000245010600041210006900147260003100216520095600247653002301203100001801226700002001244700002201264700002101286856003601307 2012 en d00aBoundary control and shape optimization for the robust design of bypass anastomoses under uncertainty0 aBoundary control and shape optimization for the robust design of bCambridge University Press3 aWe review the optimal design of an arterial bypass graft following either a (i) boundary optimal control approach, or a (ii) shape optimization formulation. The main focus is quantifying and treating the uncertainty in the residual flow when the hosting artery is not completely occluded,\\r\\nfor which the worst-case in terms of recirculation e ffects is inferred to correspond to a strong ori fice flow through near-complete occlusion. A worst-case optimal control approach is applied to the steady\\r\\nNavier-Stokes equations in 2D to identify an anastomosis angle and a cu ed shape that are robust with respect to a possible range of residual \\r\\nflows. We also consider a reduced order modelling framework\\r\\nbased on reduced basis methods in order to make the robust design problem computationally feasible. The results obtained in 2D are compared with simulations in a 3D geometry but without model\\r\\nreduction or the robust framework.10ashape optimization1 aLassila, Toni1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttp://hdl.handle.net/1963/633701643nas a2200157 4500008004100000245012600041210006900167260001300236520109700249653002201346100001801368700002001386700002201406700002101428856003601449 2012 en d00aGeneralized reduced basis methods and n-width estimates for the approximation of the solution manifold of parametric PDEs0 aGeneralized reduced basis methods and nwidth estimates for the a bSpringer3 aThe set of solutions of a parameter-dependent linear partial di fferential equation with smooth coe fficients typically forms a compact manifold in a Hilbert space. In this paper we review the generalized reduced basis method as a fast computational tool for the uniform approximation of the solution manifold. We focus on operators showing an affi ne parametric dependence, expressed as a linear combination of parameter-independent operators through some smooth, parameter-dependent scalar functions. In the case that the parameter-dependent operator has a dominant term in its affi ne expansion, one can prove the existence of exponentially convergent uniform approximation spaces for the entire solution manifold. These spaces can be constructed without any assumptions on the parametric regularity of the manifold \\r\\nonly spatial regularity of the solutions is required. The exponential convergence rate is then inherited by the generalized reduced basis method. We provide a numerical example related to parametrized elliptic\\r\\nequations con rming the predicted convergence rates.10asolution manifold1 aLassila, Toni1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttp://hdl.handle.net/1963/634001651nas a2200133 4500008004100000245008400041210006900125520120500194653002101399100002101420700002001441700002001461856003601481 2012 en d00aReduction strategies for PDE-constrained oprimization problems in Haemodynamics0 aReduction strategies for PDEconstrained oprimization problems in3 aSolving optimal control problems for many different scenarios obtained by varying a set of parameters in the state system is a computationally extensive task. In this paper we present a new reduced framework for the formulation, the analysis and the numerical solution of parametrized PDE-constrained optimization problems. This framework is based on a suitable saddle-point formulation of the optimal control problem and exploits the reduced basis method for the rapid and reliable solution of parametrized PDEs, leading to a relevant computational reduction with respect to traditional discretization techniques such as the finite element method. This allows a very efficient evaluation of state solutions and cost functionals, leading to an effective solution of repeated optimal control problems, even on domains of variable shape, for which a further (geometrical) reduction is pursued, relying on flexible shape parametrization techniques. This setting is applied to the solution of two problems arising from haemodynamics, dealing with both data reconstruction and data assimilation over domains of variable shape,\\r\\nwhich can be recast in a common PDE-constrained optimization formulation.10ainverse problems1 aRozza, Gianluigi1 aManzoni, Andrea1 aNegri, Federico uhttp://hdl.handle.net/1963/633801576nas a2200145 4500008004100000245008700041210006900128260001000197520093400207653011301141100001501254700002201269700002101291856011801312 2012 en d00aSimulation-based uncertainty quantification of human arterial network hemodynamics0 aSimulationbased uncertainty quantification of human arterial net bWiley3 aThis work aims at identifying and quantifying uncertainties from various sources in human cardiovascular\r\nsystem based on stochastic simulation of a one dimensional arterial network. A general analysis of\r\ndifferent uncertainties and probability characterization with log-normal distribution of these uncertainties\r\nis introduced. Deriving from a deterministic one dimensional fluid structure interaction model, we establish\r\nthe stochastic model as a coupled hyperbolic system incorporated with parametric uncertainties to describe\r\nthe blood flow and pressure wave propagation in the arterial network. By applying a stochastic collocation\r\nmethod with sparse grid technique, we study systemically the statistics and sensitivity of the solution with\r\nrespect to many different uncertainties in a relatively complete arterial network with potential physiological\r\nand pathological implications for the first time.10auncertainty quantification, mathematical modelling of the cardiovascular system, fluid-structure interaction1 aChen, Peng1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttps://math.sissa.it/publication/simulation-based-uncertainty-quantification-human-arterial-network-hemodynamics