TY - JOUR T1 - A reduced order model for investigating the dynamics of the Gen-IV LFR coolant pool JF - Applied Mathematical Modelling Y1 - 2017 A1 - Stefano Lorenzi A1 - Antonio Cammi A1 - Lelio Luzzi A1 - Gianluigi Rozza VL - 46 UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020006623&doi=10.1016%2fj.apm.2017.01.066&partnerID=40&md5=f6e5715037eb0ef2ecb9ae03f373294f ER - TY - JOUR T1 - A multi-physics reduced order model for the analysis of Lead Fast Reactor single channel JF - Annals of Nuclear Energy, 87, 2 (2016): pp. 198-208 Y1 - 2016 A1 - Alberto Sartori A1 - Antonio Cammi A1 - Lelio Luzzi A1 - Gianluigi Rozza AB - In this work, a Reduced Basis method, with basis functions sampled by a Proper Orthogonal Decomposition technique, has been employed to develop a reduced order model of a multi-physics parametrized Lead-cooled Fast Reactor single-channel. Being the first time that a reduced order model is developed in this context, the work focused on a methodological approach and the coupling between the neutronics and the heat transfer, where the thermal feedbacks on neutronics are explicitly taken into account, in time-invariant settings. In order to address the potential of such approach, two different kinds of varying parameters have been considered, namely one related to a geometric quantity (i.e., the inner radius of the fuel pellet) and one related to a physical quantity (i.e., the inlet lead velocity). The capabilities of the presented reduced order model (ROM) have been tested and compared with a high-fidelity finite element model (upon which the ROM has been constructed) on different aspects. In particular, the comparison focused on the system reactivity prediction (with and without thermal feedbacks on neutronics), the neutron flux and temperature field reconstruction, and on the computational time. The outcomes provided by the reduced order model are in good agreement with the high-fidelity finite element ones, and a computational speed-up of at least three orders of magnitude is achieved as well. PB - Elsevier VL - 87 UR - http://urania.sissa.it/xmlui/handle/1963/35191 U1 - 35471 U2 - Mathematics U4 - 1 U5 - MAT/08 ER - TY - JOUR T1 - POD-Galerkin Method for Finite Volume Approximation of Navier-Stokes and RANS Equations Y1 - 2016 A1 - Stefano Lorenzi A1 - Antonio Cammi A1 - Lelio Luzzi A1 - Gianluigi Rozza AB - Numerical simulation of fluid flows requires important computational efforts but it is essential in engineering applications. Reduced Order Model (ROM) can be employed whenever fast simulations are required, or in general, whenever a trade-off between computational cost and solution accuracy is a preeminent issue as in process optimization and control. In this work, the efforts have been put to develop a ROM for Computational Fluid Dynamics (CFD) application based on Finite Volume approximation, starting from the results available in turbulent Reynold-Averaged Navier Stokes simulations in order to enlarge the application field of Proper Orthogonal Decomposition – Reduced Order Model (POD – ROM) technique to more industrial fields. The approach is tested in the classic benchmark of the numerical simulation of the 2D lid-driven cavity. In particular, two simulations at Re = 103 and Re = 105 have been considered in order to assess both a laminar and turbulent case. Some quantities have been compared with the Full Order Model in order to assess the performance of the proposed ROM procedure i.e., the kinetic energy of the system and the reconstructed quantities of interest (velocity, pressure and turbulent viscosity). In addition, for the laminar case, the comparison between the ROM steady-state solution and the data available in literature has been presented. The results have turned out to be very satisfactory both for the accuracy and the computational times. As a major outcome, the approach turns out not to be affected by the energy blow up issue characterizing the results obtained by classic turbulent POD-Galerkin methods. PB - Computer Methods in Applied Mechanics and Engineering, Elsevier U1 - 35502 U2 - Mathematics U4 - 1 U5 - MAT/08 ER - TY - JOUR T1 - A Reduced Basis Approach for Modeling the Movement of Nuclear Reactor Control Rods JF - NERS-14-1062; ASME J of Nuclear Rad Sci, 2, 2 (2016) 021019 Y1 - 2016 A1 - Alberto Sartori A1 - Antonio Cammi A1 - Lelio Luzzi A1 - Gianluigi Rozza AB - This work presents a reduced order model (ROM) aimed at simulating nuclear reactor control rods movement and featuring fast-running prediction of reactivity and neutron flux distribution as well. In particular, the reduced basis (RB) method (built upon a high-fidelity finite element (FE) approximation) has been employed. The neutronics has been modeled according to a parametrized stationary version of the multigroup neutron diffusion equation, which can be formulated as a generalized eigenvalue problem. Within the RB framework, the centroidal Voronoi tessellation is employed as a sampling technique due to the possibility of a hierarchical parameter space exploration, without relying on a “classical” a posteriori error estimation, and saving an important amount of computational time in the offline phase. Here, the proposed ROM is capable of correctly predicting, with respect to the high-fidelity FE approximation, both the reactivity and neutron flux shape. In this way, a computational speedup of at least three orders of magnitude is achieved. If a higher precision is required, the number of employed basis functions (BFs) must be increased. PB - ASME VL - 2 UR - http://urania.sissa.it/xmlui/handle/1963/35192 IS - 2 N1 - 8 pages U1 - 35473 U2 - Mathematics U4 - 1 ER - TY - JOUR T1 - Reduced basis approaches in time-dependent noncoercive settings for modelling the movement of nuclear reactor control rods JF - Communications in Computational Physics Y1 - 2016 A1 - Alberto Sartori A1 - Antonio Cammi A1 - Lelio Luzzi A1 - Gianluigi Rozza AB -

In this work, two approaches, based on the certified Reduced Basis method, have been developed for simulating the movement of nuclear reactor control rods, in time-dependent non-coercive settings featuring a 3D geometrical framework. In particular, in a first approach, a piece-wise affine transformation based on subdomains division has been implemented for modelling the movement of one control rod. In the second approach, a “staircase” strategy has been adopted for simulating the movement of all the three rods featured by the nuclear reactor chosen as case study. The neutron kinetics has been modelled according to the so-called multi-group neutron diffusion, which, in the present case, is a set of ten coupled parametrized parabolic equations (two energy groups for the neutron flux, and eight for the precursors). Both the reduced order models, developed according to the two approaches, provided a very good accuracy compared with high-fidelity results, assumed as “truth” solutions. At the same time, the computational speed-up in the Online phase, with respect to the fine “truth” finite element discretization, achievable by both the proposed approaches is at least of three orders of magnitude, allowing a real-time simulation of the rod movement and control.

PB - SISSA UR - http://urania.sissa.it/xmlui/handle/1963/34963 IS - in press U1 - 35188 U2 - Mathematics ER - TY - JOUR T1 - Comparison of a Modal Method and a Proper Orthogonal Decomposition approach for multi-group time-dependent reactor spatial kinetics JF - Annals of Nuclear Energy Y1 - 2014 A1 - Alberto Sartori A1 - Davide Baroli A1 - Antonio Cammi A1 - Davide Chiesa A1 - Lelio Luzzi A1 - Roberto R. Ponciroli A1 - Ezio Previtali A1 - Marco E. Ricotti A1 - Gianluigi Rozza A1 - Monica Sisti AB -

In this paper, two modelling approaches based on a Modal Method (MM) and on the Proper Orthogonal Decomposition (POD) technique, for developing a control-oriented model of nuclear reactor spatial kinetics, are presented and compared. Both these methods allow developing neutronics description by means of a set of ordinary differential equations. The comparison of the outcomes provided by the two approaches focuses on the capability of evaluating the reactivity and the neutron flux shape in different reactor configurations, with reference to a TRIGA Mark II reactor. The results given by the POD-based approach are higher-fidelity with respect to the reference solution than those computed according to the MM-based approach, in particular when the perturbation concerns a reduced region of the core. If the perturbation is homogeneous throughout the core, the two approaches allow obtaining comparable accuracy results on the quantities of interest. As far as the computational burden is concerned, the POD approach ensures a better efficiency rather than direct Modal Method, thanks to the ability of performing a longer computation in the preprocessing that leads to a faster evaluation during the on-line phase.

PB - Elsevier VL - 71 UR - http://urania.sissa.it/xmlui/handle/1963/35039 U1 - 35270 U2 - Physics U4 - 1 ER - TY - Generic T1 - A reduced order model for multi-group time-dependent parametrized reactor spatial kinetics T2 - 22nd International Conference on Nuclear Engineering ICONE22 Y1 - 2014 A1 - Alberto Sartori A1 - Davide Baroli A1 - Antonio Cammi A1 - Lelio Luzzi A1 - Gianluigi Rozza AB -

In this work, a Reduced Order Model (ROM) for multigroup time-dependent parametrized reactor spatial kinetics is presented. The Reduced Basis method (built upon a high-fidelity "truth" finite element approximation) has been applied to model the neutronics behavior of a parametrized system composed by a control rod surrounded by fissile material. The neutron kinetics has been described by means of a parametrized multi-group diffusion equation where the height of the control rod (i.e., how much the rod is inserted) plays the role of the varying parameter. In order to model a continuous movement of the rod, a piecewise affine transformation based on subdomain division has been implemented. The proposed ROM is capable to efficiently reproduce the neutron flux distribution allowing to take into account the spatial effects induced by the movement of the control rod with a computational speed-up of 30000 times, with respect to the "truth" model.

JF - 22nd International Conference on Nuclear Engineering ICONE22 PB - American Society of Mechanical Engineers (ASME) CY - Prague, Czech Republic SN - 978-079184595-0 UR - http://urania.sissa.it/xmlui/handle/1963/35123 N1 - 2014 22nd International Conference on Nuclear Engineering, ICONE 2014; Prague; Czech Republic; 7 July 2014 through 11 July 2014; Code 109131; U1 - 35360 U2 - Mathematics U4 - 1 ER -