TY - CONF T1 - A Reduced Order Approach for the Embedded Shifted Boundary FEM and a Heat Exchange System on Parametrized Geometries T2 - IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018 Y1 - 2020 A1 - Efthymios N Karatzas A1 - Giovanni Stabile A1 - Nabib Atallah A1 - Guglielmo Scovazzi A1 - Gianluigi Rozza ED - Fehr, Jörg ED - Bernard Haasdonk AB -

A model order reduction technique is combined with an embedded boundary finite element method with a POD-Galerkin strategy. The proposed methodology is applied to parametrized heat transfer problems and we rely on a sufficiently refined shape-regular background mesh to account for parametrized geometries. In particular, the employed embedded boundary element method is the Shifted Boundary Method (SBM) recently proposed. This approach is based on the idea of shifting the location of true boundary conditions to a surrogate boundary, with the goal of avoiding cut cells near the boundary of the computational domain. This combination of methodologies has multiple advantages. In the first place, since the Shifted Boundary Method always relies on the same background mesh, there is no need to update the discretized parametric domain. Secondly, we avoid the treatment of cut cell elements, which usually need particular attention. Thirdly, since the whole background mesh is considered in the reduced basis construction, the SBM allows for a smooth transition of the reduced modes across the immersed domain boundary. The performances of the method are verified in two dimensional heat transfer numerical examples.

JF - IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018 PB - Springer International Publishing UR - https://arxiv.org/abs/1807.07753 ER - TY - JOUR T1 - A reduced-order shifted boundary method for parametrized incompressible Navier–Stokes equations JF - Computer Methods in Applied Mechanics and Engineering Y1 - 2020 A1 - Efthymios N Karatzas A1 - Giovanni Stabile A1 - Leo Nouveau A1 - Guglielmo Scovazzi A1 - Gianluigi Rozza AB -

We investigate a projection-based reduced order model of the steady incompressible Navier–Stokes equations for moderate Reynolds numbers. In particular, we construct an “embedded” reduced basis space, by applying proper orthogonal decomposition to the Shifted Boundary Method, a high-fidelity embedded method recently developed. We focus on the geometrical parametrization through level-set geometries, using a fixed Cartesian background geometry and the associated mesh. This approach avoids both remeshing and the development of a reference domain formulation, as typically done in fitted mesh finite element formulations. Two-dimensional computational examples for one and three parameter dimensions are presented to validate the convergence and the efficacy of the proposed approach.

VL - 370 UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087886522&doi=10.1016%2fj.cma.2020.113273&partnerID=40&md5=d864e4808190b682ecb1c8b27cda72d8 ER - TY - JOUR T1 - A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow JF - Computer Methods in Applied Mechanics and Engineering Y1 - 2019 A1 - Efthymios N Karatzas A1 - Giovanni Stabile A1 - Leo Nouveau A1 - Guglielmo Scovazzi A1 - Gianluigi Rozza AB -

We propose a model order reduction technique integrating the Shifted Boundary Method (SBM) with a POD-Galerkin strategy. This approach allows to deal with complex parametrized domains in an efficient and straightforward way. The impact of the proposed approach is threefold. First, problems involving parametrizations of complex geometrical shapes and/or large domain deformations can be efficiently solved at full-order by means of the SBM. This unfitted boundary method permits to avoid remeshing and the tedious handling of cut cells by introducing an approximate surrogate boundary. Second, the computational effort is reduced by the development of a Reduced Order Model (ROM) technique based on a POD-Galerkin approach. Third, the SBM provides a smooth mapping from the true to the surrogate domain, and for this reason, the stability and performance of the reduced order basis are enhanced. This feature is the net result of the combination of the proposed ROM approach and the SBM. Similarly, the combination of the SBM with a projection-based ROM gives the great advantage of an easy and fast to implement algorithm considering geometrical parametrization with large deformations. The transformation of each geometry to a reference geometry (morphing) is in fact not required. These combined advantages will allow the solution of PDE problems more efficiently. We illustrate the performance of this approach on a number of two-dimensional Stokes flow problems.

VL - 347 UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060107322&doi=10.1016%2fj.cma.2018.12.040&partnerID=40&md5=1a3234f0cb000c91494d946428f8ebef ER -