We consider a real periodic Schrödinger operator and a physically relevant family of $m \geq 1$ Bloch bands, separated by a gap from the rest of the spectrum, and we investigate the localization properties of the corresponding composite Wannier functions. To this aim, we show that in dimension $d\leq 3$, there exists a global frame consisting of smooth quasi-Bloch functions which are both periodic and time-reversal symmetric. Aiming to applications in computational physics, we provide a constructive algorithm to obtain such a Bloch frame. The construction yields the existence of a basis of composite Wannier functions which are real-valued and almost-exponentially localized. The proof of the main result exploits only the fundamental symmetries of the projector on the relevant bands, allowing applications, beyond the model specified above, to a broad range of gapped periodic quantum systems with a time-reversal symmetry of bosonic type.

%B Annales Henri Poincaré %V 17 %P 63–97 %8 Jan %G eng %U https://doi.org/10.1007/s00023-015-0400-6 %R 10.1007/s00023-015-0400-6