In this work, Dynamic Mode Decomposition (DMD) and Proper Orthogonal Decomposition (POD) methodologies are applied to hydroacoustic dataset computed using Large Eddy Simulation (LES) coupled with Ffowcs Williams and Hawkings (FWH) analogy. First, a low-dimensional description of the flow fields is presented with modal decomposition analysis. Sensitivity towards the DMD and POD bases truncation rank is discussed, and extensive dataset is provided to demonstrate the ability of both algorithms to reconstruct the flow fields with all the spatial and temporal frequencies necessary to support accurate noise evaluation. Results show that while DMD is capable to capture finer coherent structures in the wake region for the same amount of employed modes, reconstructed flow fields using POD exhibit smaller magnitudes of global spatiotemporal errors compared with DMD counterparts. Second, a separate set of DMD and POD modes generated using half the snapshots is employed into two data-driven reduced models respectively, based on DMD mid cast and POD with Interpolation (PODI). In that regard, results confirm that the predictive character of both reduced approaches on the flow fields is sufficiently accurate, with a relative superiority of PODI results over DMD ones. This infers that, discrepancies induced due to interpolation errors in PODI is relatively low compared with errors induced by integration and linear regression operations in DMD, for the present setup. Finally, a post processing analysis on the evaluation of FWH acoustic signals utilizing reduced fluid dynamic fields as input demonstrates that both DMD and PODI data-driven reduced models are efficient and sufficiently accurate in predicting acoustic noises.

%B Computers & Fluids %V 216 %P 104819 %G eng %U https://www.sciencedirect.com/science/article/pii/S0045793020303893 %R https://doi.org/10.1016/j.compfluid.2020.104819 %0 Journal Article %J The Journal of Open Source Software %D 2019 %T BladeX: Python Blade Morphing %A Mahmoud Gadalla %A Marco Tezzele %A Andrea Mola %A Gianluigi Rozza %B The Journal of Open Source Software %V 4 %P 1203 %G eng %R 10.21105/joss.01203 %0 Conference Paper %B 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019 %D 2019 %T Efficient reduction in shape parameter space dimension for ship propeller blade design %A Andrea Mola %A Marco Tezzele %A Mahmoud Gadalla %A Valdenazzi, Federica %A Grassi, Davide %A Padovan, Roberta %A Gianluigi Rozza %XIn this work, we present the results of a ship propeller design optimization campaign carried out in the framework of the research project PRELICA, funded by the Friuli Venezia Giulia regional government. The main idea of this work is to operate on a multidisciplinary level to identify propeller shapes that lead to reduced tip vortex-induced pressure and increased efficiency without altering the thrust. First, a specific tool for the bottom-up construction of parameterized propeller blade geometries has been developed. The algorithm proposed operates with a user defined number of arbitrary shaped or NACA airfoil sections, and employs arbitrary degree NURBS to represent the chord, pitch, skew and rake distribution as a function of the blade radial coordinate. The control points of such curves have been modified to generate, in a fully automated way, a family of blade geometries depending on as many as 20 shape parameters. Such geometries have then been used to carry out potential flow simulations with the Boundary Element Method based software PROCAL. Given the high number of parameters considered, such a preliminary stage allowed for a fast evaluation of the performance of several hundreds of shapes. In addition, the data obtained from the potential flow simulation allowed for the application of a parameter space reduction methodology based on active subspaces (AS) property, which suggested that the main propeller performance indices are, at a first but rather accurate approximation, only depending on a single parameter which is a linear combination of all the original geometric ones. AS analysis has also been used to carry out a constrained optimization exploiting response surface method in the reduced parameter space, and a sensitivity analysis based on such surrogate model. The few selected shapes were finally used to set up high fidelity RANS simulations and select an optimal shape.

%B 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019 %G eng %U https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075395143&partnerID=40&md5=b6aa0fcedc2f88e78c295d0f437824d0 %0 Conference Paper %B Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research %D 2018 %T Model Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics %A Marco Tezzele %A Nicola Demo %A Mahmoud Gadalla %A Andrea Mola %A Gianluigi Rozza %X We present the results of the application of a parameter space reduction methodology based on active subspaces (AS) to the hull hydrodynamic design problem. Several parametric deformations of an initial hull shape are considered to assess the influence of the shape parameters on the hull wave resistance. Such problem is relevant at the preliminary stages of the ship design, when several flow simulations are carried out by the engineers to establish a certain sensibility with respect to the parameters, which might result in a high number of time consuming hydrodynamic simulations. The main idea of this work is to employ the AS to identify possible lower dimensional structures in the parameter space. The complete pipeline involves the use of free form deformation to parametrize and deform the hull shape, the full order solver based on unsteady potential flow theory with fully nonlinear free surface treatment directly interfaced with CAD, the use of dynamic mode decomposition to reconstruct the final steady state given only few snapshots of the simulation, and the reduction of the parameter space by AS, and shared subspace. Response surface method is used to minimize the total drag. %B Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research %I IOS Press %C Trieste, Italy %G eng %U http://ebooks.iospress.nl/publication/49270 %R 10.3233/978-1-61499-870-9-569