MENU

You are here

Publications

Export 1772 results:
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Marson A. Approximation, Stability and control for Conservation Laws. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/5500
Bellettini G, Tealdi L, Paolini M. On the area of the graph of a piecewise smooth map from the plane to the plane with a curve discontinuity. ESAIM: COCV [Internet]. 2016 ;22(1):29-63. Available from: https://www.esaim-cocv.org/articles/cocv/abs/2016/01/cocv140065/cocv140065.html
Berti M. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
Berti M, Bolle P. Arnold's Diffusion in nearly integrable isochronous Hamiltonian systems. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1554
Pichi F, Ballarin F, Rozza G, Hesthaven JS. An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. 2021 .
Toader R, Zanini C. An artificial viscosity approach to quasistatic crack growth.; 2006. Available from: http://hdl.handle.net/1963/1850
Dabrowski L, Reina C, Zampa A. A(SLq(2)) at roots of unity is a free module over A(SL(2)). Lett. Math. Phys., 2000, 52, 339 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1500
Piacitelli G. Aspects of Quantum Field Theory on Quantum Spacetime. PoS CNCFG2010:027,2010 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/4171
Corsi G. Asymptotic approach to a rotational Taylor swimming sheet. Comptes Rendus. Mécanique. 2021 ;349:103–116.
Dal Maso G, Skrypnik IV. Asymptotic behavior of nonlinear Dirichlet problems in perforated domains. Ann. Mat. Pura Appl. (4) 174 (1998), 13--72 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/1064
Dal Maso G, Murat F. Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré. Anal. Non Linéaire 21 (2004), (4), p. 445-486. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1611
Garroni A. Asymptotic Behaviour of Dirichlet Problems in Perforated Domains. [Internet]. 1994 . Available from: http://hdl.handle.net/1963/5714
Dal Maso G, Skrypnik IV. Asymptotic behaviour of nonlinear elliptic higher order equations in perforated domains. Journal d\\\'Analyse Mathematique, Volume 79, 1999, Pages: 63-112 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/6433
Bianchini S, Hanouzet B, Natalini R. Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60 (2007) 1559-1622 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1780
Vidossich G. On the asymptotic behaviour of solutions to Pazy\\\'s class of evolution equations. [Internet]. 1983 . Available from: http://hdl.handle.net/1963/276
Guzzetti D, Mantica G. The Asymptotic Behaviour of the Fourier Transforms of Orthogonal Polynomials II: L.I.F.S. Measures and Quantum Mechanics. Ann. Henri Poincar´e 8 (2007), 301–336. 2007 .
Selvitella A. Asymptotic evolution for the semiclassical nonlinear Schrödinger equation in presence of electric and magnetic fields. Journal of Differential Equations [Internet]. 2008 ;245:2566 - 2584. Available from: http://www.sciencedirect.com/science/article/pii/S002203960800243X
Bräunlich G, Hasler D, Lange M. On asymptotic expansions in spin-boson models. Ann. Henri Poincaré [Internet]. 2018 ;19:515–564. Available from: https://doi.org/10.1007/s00023-017-0625-7
Chanillo S, Malchiodi A. Asymptotic Morse theory for the equation $\\\\Delta v=2v\\\\sb x\\\\wedge v\\\\sb y$. Comm. Anal. Geom. 13 (2005) 187-252 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3533
Guzzetti D. An asymptotic reduction of a Painlevé VI equation to a Painlevé III. J.Phys.A: Math.Theor. 44 (2011) 215203 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5124
Bertola M, Tovbis A. On asymptotic regimes of orthogonal polynomials with complex varying quartic exponential weight. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2016 ;12:Paper No. 118, 50 pages. Available from: http://dx.doi.org/10.3842/SIGMA.2016.118
Bressan A, Ping Z, Yuxi Z. Asymptotic variational wave equations. Arch. Ration. Mech. Anal. 183 (2007) 163-185 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2182
Bertola M, Tovbis A. Asymptotics of orthogonal polynomials with complex varying quartic weight: global structure, critical point behavior and the first Painlevé equation. Constr. Approx. [Internet]. 2015 ;41:529–587. Available from: http://dx.doi.org/10.1007/s00365-015-9288-0
Tilli P, Zucco D. Asymptotics of the first Laplace eigenvalue with Dirichlet regions of prescribed length. [Internet]. 2013 . Available from: http://urania.sissa.it/xmlui/handle/1963/35141
Dipierro S, Figalli A, Palatucci G, Valdinoci E. Asymptotics of the s-perimeter as s →0 . Discrete Contin. Dyn. Syst. 33, nr.7 (2012): 2777-2790. 2012 .

Pages

Sign in