MENU

You are here

Publications

Export 1865 results:
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Dal Maso G, Murat F. Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré. Anal. Non Linéaire 21 (2004), (4), p. 445-486. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1611
Dal Maso G, Skrypnik IV. Asymptotic behavior of nonlinear Dirichlet problems in perforated domains. Ann. Mat. Pura Appl. (4) 174 (1998), 13--72 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/1064
Corsi G. Asymptotic approach to a rotational Taylor swimming sheet. Comptes Rendus. Mécanique. 2021 ;349:103–116.
Sheidani A, Salavatidezfouli S, Stabile G, Rozza G. Assessment of URANS and LES methods in predicting wake shed behind a vertical axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics. 2023 ;232:105285.
Sheidani A, Salavatidezfouli S, Stabile G, Gerdroodbary MBarzegar, Rozza G. Assessment of icing effects on the wake shed behind a vertical axis wind turbine. Physics of Fluids. 2023 ;35.
Piacitelli G. Aspects of Quantum Field Theory on Quantum Spacetime. PoS CNCFG2010:027,2010 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/4171
Dabrowski L, Reina C, Zampa A. A(SLq(2)) at roots of unity is a free module over A(SL(2)). Lett. Math. Phys., 2000, 52, 339 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1500
Toader R, Zanini C. An artificial viscosity approach to quasistatic crack growth.; 2006. Available from: http://hdl.handle.net/1963/1850
Pichi F, Ballarin F, Rozza G, Hesthaven JS. An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. 2021 .
Berti M, Bolle P. Arnold's Diffusion in nearly integrable isochronous Hamiltonian systems. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1554
Berti M. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
Bellettini G, Tealdi L, Paolini M. On the area of the graph of a piecewise smooth map from the plane to the plane with a curve discontinuity. ESAIM: COCV [Internet]. 2016 ;22(1):29-63. Available from: https://www.esaim-cocv.org/articles/cocv/abs/2016/01/cocv140065/cocv140065.html
Marson A. Approximation, Stability and control for Conservation Laws. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/5500
Iurlano F. An Approximation Result for Generalised Functions of Bounded Deformation and Applications to Damage Problems. 2013 .
Bonito A, Lei W. Approximation of the spectral fractional powers of the Laplace-Beltrami Operator. arXiv preprint arXiv:2101.05141. 2021 .
Riva F. On the Approximation of Quasistatic Evolutions for the Debonding of a Thin Film via Vanishing Inertia and Viscosity. [Internet]. 2020 ;30(3):903 - 951. Available from: https://doi.org/10.1007/s00332-019-09595-8
Bonito A, Lei W, Pasciak JE. The approximation of parabolic equations involving fractional powers of elliptic operators. J. Comput. Appl. Math. [Internet]. 2017 ;315:32–48. Available from: http://dx.doi.org/10.1016/j.cam.2016.10.016
Bruzzo U, Otero BGraña. Approximate Hitchin-Kobayashi correspondence for Higgs G-bundles. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35095
Bruzzo U, Grana-Otero B. Approximate Hermitian–Yang–Mills structures on semistable principal Higgs bundles. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34645
Dal Maso G, Musina R. An approach to the thin obstacle problem for variational functionals depending on vector. Comm. Partial Differential Equations, 14 (1989), no.12, 1717-1743. [Internet]. 1989 . Available from: http://hdl.handle.net/1963/802
Ambrosetti A, Berti M. Applications of critical point theory to homoclinics and complex dynamics. In: Discrete Contin. Dynam. Systems. Discrete Contin. Dynam. Systems. ; 1998. pp. 72–78.
Pitton G, Rozza G. On the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics. Journal of Scientific Computing. 2017 .
Feltrin G, Zanolin F. An application of coincidence degree theory to cyclic feedback type systems associated with nonlinear differential operators. Topol. Methods Nonlinear Anal. [Internet]. 2017 ;50:683–726. Available from: https://doi.org/10.12775/TMNA.2017.038
Salavatidezfouli S, Hajisharifi S, Girfoglio M, Stabile G, Rozza G. Applicable Methodologies for the Mass Transfer Phenomenon in Tumble Dryers: A Review. 2023 .
Salavatidezfouli S, Hajisharifi A, Girfoglio M, Stabile G, Rozza G. Applicable Methodologies for the Mass Transfer Phenomenon in Tumble Dryers: A Review. arXiv preprint arXiv:2304.03533. 2023 .

Pages

Sign in