Recent advances in the study of the existence of periodic orbits of Hamiltonian systems. Advances in Hamiltonian systems (Rome, 1981), 1--22, Ann. CEREMADE, Birkhauser Boston, Boston, MA, 1983. [Internet]. 1981 . Available from: http://hdl.handle.net/1963/159
. Differential equations with multiple solutions and nonlinear functional analysis. Equadiff 82 (Wurzburg, 1982), 10--37, Lecture Notes in Math., 1017, Springer, Berlin, 1983 [Internet]. 1982 . Available from: http://hdl.handle.net/1963/222
. Solutions with minimal period for Hamiltonian systems in a potential well. Ann. Inst. H. Poincare Anal. Non Lineaire 4 (1987), no. 3, 275-296 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/466
. Symmetry breaking in Hamiltonian systems. J. Differential Equations 67 (1987), no. 2, 165-184 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/409
. Branching points for a class of variational operators. J. Anal. Math. 76 (1998) 321-335 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3314
. A multiplicity result for the Yamabe problem on $S\\\\sp n$. J. Funct. Anal. 168 (1999), no. 2, 529-561 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1264
. Perturbation of $\Delta u+u^(N+2)/(N-2)=0$, the scalar curvature problem in $R^N$, and related topics. J. Funct. Anal. 165 (1999) 117-149 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3255
. On the scalar curvature problem under symmetry. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1287
. Elliptic variational problems in $ R\\\\sp N$ with critical growth. J. Differential Equations 168 (2000), no. 1, 10--32 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1258
. Existence and multiplicity results for some nonlinear elliptic equations: a survey. Rend. Mat. Appl., 2000, 20, 167 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1462
. A note on the scalar curvature problem in the presence of symmetries. Ricerche Mat. 49 (2000), suppl., 169-176 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1365
. Scalar curvature under boundary conditions. Cr. Acad. Sci. I-Math, 2000, 330, 1013 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1506
. Multiplicity results for some nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. An., 2001, 159, 253 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1564
. On the symmetric scalar curvature problem on S\\\\sp n. J. Differential Equations 170 (2001) 228-245 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3095
. Multiplicity results for the Yamabe problem on Sn. Proceedings of the National Academy of Sciences of the United States of America. 2002 Nov; 99(24):15252-6 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/5885
. Solutions concentrating on spheres to symmetric singularly perturbed problems. C.R.Math.Acad.Sci. Paris 335 (2002),no.2,145-150 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1594
. On the Yamabe problem and the scalar curvature problems under boundary conditions. Math. Ann., 2002, 322, 667 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1510
. Positive solutions to a class of quasilinear elliptic equations on R. Discrete Contin.Dyn.Syst. 9 (2003), no.1, 55-68 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1628
. Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I. Comm. Math. Phys. 235 (2003) no.3, 427-466 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1633
. Singularity perturbed elliptic equations with symmetry: existence of solutions concetrating on spheres, Part II. Indiana Univ. Math. J. 53 (2004) 297-392 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1663
. Ground states of nonlinear Schroedinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7 (2005) 117-144 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2352
. . Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453-458 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2149
. Bound states of Nonlinear Schroedinger Equations with Potentials Vanishing at Infinity. J. Anal. Math. 98 (2006) 317-348 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1756
. Radial solutions concentrating on spheres of nonlinear Schrödinger equations with vanishing potentials. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 889-907 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1755
.