On the Cauchy Problem for the Whitham Equations. [Internet]. 1998 . Available from: http://hdl.handle.net/1963/5555
. Singular Z_N curves, Riemann-Hilbert problem and modular solutions of the Schlesinger equation. Int. Math. Res. Not. 2004, no. 32, 1619-1683 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2540
. Modulation of the Camassa-Holm equation and reciprocal transformations. Ann. Inst. Fourier (Grenoble) 55 (2005) 1803-1834 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2305
. Large Parameter Behavior of Equilibrium Measures.; 2006. Available from: http://hdl.handle.net/1963/1789
. Thomae type formulae for singular Z_N curves. Lett. Math. Phys. 76 (2006) 187-214 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2125
. Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations.; 2007. Available from: http://hdl.handle.net/1963/1788
. Numerical study of a multiscale expansion of KdV and Camassa-Holm equation.; 2007. Available from: http://hdl.handle.net/1963/2527
. Reciprocal transformations and flat metrics on Hurwitz spaces. J. Phys. A 40 (2007) 10769-10790 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2210
. Numerical study of a multiscale expansion of the Korteweg-de Vries equation and Painlevé-II equation. Proc. R. Soc. A 464 (2008) 733-757 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2592
. Initial value problem of the Whitham equations for the Camassa-Holm equation. Physica D 238 (2009) 55-66 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3429
. On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the \\\\it tritronquée solution to the Painlevé-I equation. J. Nonlinear Sci. 19 (2009) 57-94 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2525
. Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach. Comm. Math. Phys. 286 (2009) 979-1009 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2636
. Numerical Solution of the Small Dispersion Limit of the Camassa-Holm and Whitham Equations and Multiscale Expansions.; 2010. Available from: http://hdl.handle.net/1963/3840
. Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg-de Vries equation in the small-dispersion limit. Comm. Pure Appl. Math. 63 (2010) 203-232 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3799
. Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit. SIAM J. Math. Anal. 42 (2010) 2132-2154 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3839
. Numerical Study of breakup in generalized Korteweg-de Vries and Kawahara equations. SIAM J. Appl. Math. 71 (2011) 983-1008 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4951
. The KdV hierarchy: universality and a Painleve transcendent. International Mathematics Research Notices, vol. 22 (2012) , page 5063-5099 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6921
. Numerical study of the small dispersion limit of the Korteweg-de Vries equation and asymptotic solutions. Physica D 241, nr. 23-24 (2012): 2246-2264. 2012 .
. .
On the tritronquée solutions of P$_I^2$. SISSA; 2013.
. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences [Internet]. 2018 ;474:20170458. Available from: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0458
. Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane. Symmetry, Integrability and Geometry. Methods and Applications. 2018 ;14.
.