A Kellogg property for µ-capacities. Boll. Un. Mat. Ital. A (7) 2, 1988, no. 1, 127-135 [Internet]. 1988 . Available from: http://hdl.handle.net/1963/492
. Kam theorem for generic analytic perturbations of the Guler system. Z. Angew. Math. Phys. 48 (1997), no. 2, 193-219 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/1038
. Krichever maps, Faà di Bruno polynomials, and cohomology in KP theory. Lett. Math. Phys. 42 (1997) 349-361 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/3539
. On the K+P problem for a three-level quantum system: optimality implies resonance. J.Dynam. Control Systems 8 (2002),no.4, 547 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1601
. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences and Engineering 7(2):301-312, 2010 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2393
. The KdV hierarchy: universality and a Painleve transcendent. International Mathematics Research Notices, vol. 22 (2012) , page 5063-5099 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6921
. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen. 2014 :1-66.
. KAM for quasi-linear and fully nonlinear perturbations of Airy and KdV equations. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/7476
. KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris [Internet]. 2014 ;352(7-8):603-607. Available from: http://urania.sissa.it/xmlui/handle/1963/35067
. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
. KAM for PDEs. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:115–142. Available from: https://doi.org/10.1007/s40574-016-0067-z
. Kinematics of flagellar swimming in Euglena gracilis: Helical trajectories and flagellar shapes. Proceedings of the National Academy of Sciences [Internet]. 2017 ;114:13085-13090. Available from: https://www.pnas.org/content/114/50/13085
. The Kontsevich matrix integral: convergence to the Painlevé hierarchy and Stokes' phenomenon. Comm. Math. Phys [Internet]. 2017 ;DOI 10.1007/s00220-017-2856-3. Available from: http://arxiv.org/abs/1603.06420
. . KAM for gravity water waves in finite depth. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2018 ;29:215–236. Available from: https://doi.org/10.4171/RLM/802
. KAM theory for partial differential equations. Anal. Theory Appl. [Internet]. 2019 ;35:235–267. Available from: https://doi.org/10.4208/ata.oa-0013
. On Krylov solutions to infinite-dimensional inverse linear problems. Calcolo. 2019 ;56:1–25.
. Kernel-based active subspaces with application to computational fluid dynamics parametric problems using discontinuous Galerkin method. International Journal for Numerical Methods in Engineering. 2022 ;123:6000-6027.
. KAM for Vortex Patches. Regular and Chaotic Dynamics [Internet]. 2024 ;29(4):654 - 676. Available from: https://doi.org/10.1134/S1560354724540013
.