Export 702 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Generation of primordial fluctuations in curved spaces. Gravit. Cosmol. 1998 ;4:121–127.
. A generic classification of time-optimal planar stabilizing feedbacks. SIAM J. Control Optim. 36 (1998) 12-32 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/998
. A geometric approach to the separability of the Neumann-Rosochatius system. Differential Geom. Appl. 21 (2004) 349-360 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2541
. Geometric control approach to synthesis theory. Rend. Sem. Mat. Univ. Politec. Torino 56 (1998), no. 4, 53-68 (2001) [Internet]. 1998 . Available from: http://hdl.handle.net/1963/1277
. On the geometric origin of the bi-Hamiltonian structure of the Calogero-Moser system. Int. Math. Res. Not. (2010) 2010:279-296 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3800
. Glimm interaction functional for BGK schemes.; 2006. Available from: http://hdl.handle.net/1963/1770
. A Glimm type functional for a special Jin-Xin relaxation model. Ann. Inst. H. Poincare\\\' Anal. Non Lineaire 18 (2001), no. 1, 19-42 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1355
. Global solutions of the Hunter-Saxton equation. SIAM J. Math. Anal. 37 (2005) 996-1026 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2256
. Global Structure of Admissible BV Solutions to Piecewise Genuinely Nonlinear, Strictly Hyperbolic Conservation Laws in One Space Dimension. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34694
. The Gysin sequence for quantum lens spaces. Journal of Noncommutative Geometry. 2016 ;9:1077–1111.
. Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence. Annals of PDEs [Internet]. 2022 . Available from: https://arxiv.org/abs/2212.12255
. Hamiltonian paradifferential Birkhoff normal form for water waves. Regul. Chaotic Dyn. [Internet]. 2023 ;28:543–560. Available from: https://doi.org/10.1134/S1560354723040032
. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
. Harish-Chandra integrals as nilpotent integrals. Int. Math. Res. Not. IMRN. 2008 :Art. ID rnn062, 15.
. On the Hausdorff Measure of $\R^n$ with the Euclidean Topology.; 2022. Available from: https://arxiv.org/abs/2203.03393
. On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and Partial Differential Equations. Volume 43, Issue 3-4, March 2012, Pages 355-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6454
. On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and Partial Differential Equations. Volume 43, Issue 3-4, March 2012, Pages 355-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6454
. Heteroclinic solutions for perturbed second order systems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1997 ;8:251–262.
. Hierarchical model reduction techniques for flow modeling in a parametrized setting. Multiscale Modeling and Simulation. 2021 ;19:267-293.
. High-order angles in almost-Riemannian geometry.; 2007. Available from: http://hdl.handle.net/1963/1995
. Hilbert schemes of points of OP1(-n) as quiver varieties. [Internet]. 2015 . Available from: http://urania.sissa.it/xmlui/handle/1963/34487
. Hilbert schemes of points on some K3 surfaces and Gieseker stable boundles. MATH PROC CAMBRIDGE 120: 255-261 Part 2 [Internet]. 1994 . Available from: http://hdl.handle.net/1963/937
. Hitchin systems, N=2 gauge theories and W-gravity. Phys. Lett. B 691 (2010) 111-115 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3831
.