MENU

You are here

Publications

Export 1816 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Bressan A, Yuxi Z. Conservative Solutions to a Nonlinear Variational Wave Equation. Comm. Math. Phys. 266 (2006) 471-497 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2184
Strazzullo M, Girfoglio M, Ballarin F, Iliescu T, Rozza G. Consistency of the full and reduced order models for Evolve-Filter-Relax Regularization of Convection-Dominated, Marginally-Resolved Flows. 2021 .
Amato S, Bellettini G, Paolini M. Constrained BV functions on double coverings for Plateau's type problems. Adv. Calc. Var. 2015 .
Fiorenza D, Monaco D, Panati G. Construction of Real-Valued Localized Composite Wannier Functions for Insulators. Annales Henri Poincaré [Internet]. 2016 ;17:63–97. Available from: https://doi.org/10.1007/s00023-015-0400-6
Erceg M, Michelangeli A. On contact interactions realised as Friedrichs systems.; 2017. Available from: http://preprints.sissa.it/handle/1963/35298
Agrachev AA, Lee P. Continuity of optimal control costs and its application to weak KAM theory. Calculus of Variations and Partial Differential Equations. Volume 39, Issue 1, 2010, Pages 213-232 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6459
Tasso E. On the continuity of the trace operator in GSBV (Ω) and GSBD (Ω). ESAIM: COCV [Internet]. 2020 ;26. Available from: https://doi.org/10.1051/cocv/2019014
Vidossich G. On the continuous dependence of solutions of boundary value problems for ordinary differential equations. J. Differential Equations 82 (1989), no. 1, 1--14 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/633
Vidossich G. On the continuous dependence of solutions of boundary value problems for ordinary differential equations (Revised version). J. Differential Equations 82 (1989), no. 1, 1-14 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/666
Riva F. A continuous dependence result for a dynamic debonding model in dimension one. SISSA; 2019. Available from: http://preprints.sissa.it/xmlui/handle/1963/35329
Coclite GM. Control Problems for Systems of Conservation Laws. [Internet]. 2003 . Available from: http://hdl.handle.net/1963/5325
Altafini C. Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds. Systems Control Lett. 58 (2009) 213-216 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3523
Chitour Y, Piccoli B. Controllability for discrete systems with a finite control set. Math. Control Signals Systems 14 (2001) 173-193 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3114
Altafini C. Controllability of quantum mechanical systems by root space decomposition of su(N). J.Math.Phys. 43(2002), no.5, 2051 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1613
Chambrion T, Mason P, Sigalotti M, Boscain U. Controllability of the discrete-spectrum Schrodinger equation driven by an external field. Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009) 329-349 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2547
Agrachev AA, Caponigro M. Controllability on the group of diffeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 2503-2509 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3396
Altafini C. Controllability properties for finite dimensional quantum Markovian master equations. J. Math. Phys. 44 (2003) 2357-2372 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/2909
Caruso N, Novati P. Convergence analysis of LSQR for compact operator equations. Linear Algebra and its Applications [Internet]. 2019 ;583:146-164. Available from: https://www.sciencedirect.com/science/article/pii/S0024379519303714
Cangiani A, Manzini G, Russo A. Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. [Internet]. 2009 ;47:2612–2637. Available from: https://doi.org/10.1137/080717560
Cangiani A, Georgoulis EH, Sabawi YA. Convergence of an adaptive discontinuous Galerkin method for elliptic interface problems. J. Comput. Appl. Math. [Internet]. 2020 ;367:112397, 15. Available from: https://doi.org/10.1016/j.cam.2019.112397
Mora MG, Müller S, Schultz MG. Convergence of equilibria of planar thin elastic beams. Indiana Univ. Math. J. 56 (2007) 2413-2438 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1830
Mora MG, Scardia L. Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density. [Internet]. 2012 . Available from: http://hdl.handle.net/1963/3466
Davoli E, Mora MG. Convergence of equilibria of thin elastic rods under physical growth conditions for the energy density.; 2010. Available from: http://hdl.handle.net/1963/4086
Mora MG, Müller S. Convergence of equilibria of three-dimensional thin elastic beams. Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 873-896 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1896
Bressan A, Jenssen HK. On the convergence of Godunov scheme for nonlinear hyperbolic systems. Chinese Ann. Math. B, 2000, 21, 269 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1473

Pages

Sign in