MENU

You are here

Publications

Export 699 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
Journal Article
Ambrosetti A, Berti M. Homoclinics and complex dynamics in slowly oscillating systems. Discrete Contin. Dynam. Systems [Internet]. 1998 ;4:393–403. Available from: https://doi.org/10.3934/dcds.1998.4.393
Barchiesi M, Dal Maso G. Homogenization of fiber reinforced brittle materials: the extremal cases. SIAM J. Math. Anal. 41 (2009) 1874-1889 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2705
Agrachev AA, Boarotto F, Lerario A. Homotopically invisible singular curves. Calculus of Variations and Partial Differential Equations [Internet]. 2017 ;56:105. Available from: https://doi.org/10.1007/s00526-017-1203-z
Boarotto F, Lerario A. Homotopy properties of horizontal path spaces and a theorem of Serre in subriemannian geometry. Communications in Analysis and Geometry. 2017 ;25:269–301.
Georgaka S, Stabile G, Star K, Rozza G, Bluck MJ. A hybrid reduced order method for modelling turbulent heat transfer problems. Computers & Fluids [Internet]. 2020 ;208:104615. Available from: https://arxiv.org/abs/1906.08725
Bosco A, Bano F, Parisse P, Casalis L, DeSimone A, Micheletti C. Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. Nanoscale. 2012 Mar; 4(5):1734-41. 2012 .
Bosco A, Bano F, Parisse P, Casalis L, DeSimone A, Micheletti C. Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. Nanoscale. 2012 Mar; 4(5):1734-41. 2012 .
Bressan A. Hyperbolic Systems of Conservation Laws. Rev. Mat. Complut. 12 (1999) 135-200 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1855
Bressan A. An ill posed Cauchy problem for a hyperbolic system in two space dimensions. [Internet]. 2003 . Available from: http://hdl.handle.net/1963/2913
Bardelloni M, Malchiodi A. An improved geometric inequality via vanishing moments, with applications to singular Liouville equations. Communications in Mathematical Physics 322, nr.2 (2013): 415-452 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6561
Bressan A, Jenssen HK, Baiti P. An instability of the Godunov scheme. Comm. Pure Appl. Math. 59 (2006) 1604-1638 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2183
Bressan A, Jenssen HK, Baiti P. An instability of the Godunov scheme. Comm. Pure Appl. Math. 59 (2006) 1604-1638 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2183
Agrachev AA, Boscain U, Gauthier J-P, Rossi F. The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009) 2621-2655 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2669
Boscain U, Rossi F. Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851-1878 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2144
Bianchini S, Spinolo L. Invariant manifolds for a singular ordinary differential equation. Journal of Differential Equations 250 (2011) 1788-1827 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/2554
Bertola M, Katsevich A, Tovbis A. Inversion formulae for the $\romancosh$-weighted Hilbert transform. Proc. Amer. Math. Soc. [Internet]. 2013 ;141:2703–2718. Available from: http://dx.doi.org/10.1090/S0002-9939-2013-11642-4
Bertola M, Mo MY. Isomonodromic deformation of resonant rational connections. IMRP Int. Math. Res. Pap. 2005 :565–635.
Puglisi G, Poletti D, Fabbian G, Baccigalupi C, Heltai L, Stompor R. Iterative map-making with two-level preconditioning for polarized cosmic microwave background data sets. A worked example for ground-based experiments. ASTRONOMY & ASTROPHYSICS [Internet]. 2018 ;618:1–14. Available from: https://arxiv.org/abs/1801.08937
Baldi P, Berti M, Montalto R. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
Baldi P, Berti M, Montalto R. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
Baldi P, Berti M, Montalto R. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
Baldi P, Berti M, Montalto R. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
Baldi P, Berti M, Haus E, Montalto R. KAM for gravity water waves in finite depth. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2018 ;29:215–236. Available from: https://doi.org/10.4171/RLM/802
Baldi P, Berti M, Haus E, Montalto R. KAM for gravity water waves in finite depth. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2018 ;29:215–236. Available from: https://doi.org/10.4171/RLM/802
Berti M. KAM for PDEs. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:115–142. Available from: https://doi.org/10.1007/s40574-016-0067-z

Pages

Sign in