MENU

You are here

Publications

Export 690 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
J
Bertola M. Jacobi groups, Jacobi forms and their applications. In: Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Vol. 31. Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Providence, RI: Amer. Math. Soc.; 2002. pp. 99–111.
K
Baldi P, Berti M, Montalto R. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
Baldi P, Berti M, Montalto R. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
Baldi P, Berti M, Montalto R. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
Baldi P, Berti M, Montalto R. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
Baldi P, Berti M, Haus E, Montalto R. KAM for gravity water waves in finite depth. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2018 ;29:215–236. Available from: https://doi.org/10.4171/RLM/802
Baldi P, Berti M, Haus E, Montalto R. KAM for gravity water waves in finite depth. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2018 ;29:215–236. Available from: https://doi.org/10.4171/RLM/802
Berti M. KAM for PDEs. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:115–142. Available from: https://doi.org/10.1007/s40574-016-0067-z
Baldi P, Berti M, Montalto R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen. 2014 :1-66.
Baldi P, Berti M, Montalto R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen. 2014 :1-66.
Baldi P, Berti M, Montalto R. KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris [Internet]. 2014 ;352(7-8):603-607. Available from: http://urania.sissa.it/xmlui/handle/1963/35067
Baldi P, Berti M, Montalto R. KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris [Internet]. 2014 ;352(7-8):603-607. Available from: http://urania.sissa.it/xmlui/handle/1963/35067
Berti M, Biasco L, Procesi M. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
Berti M, Biasco L, Procesi M. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
Berti M. KAM for Vortex Patches. Regular and Chaotic Dynamics [Internet]. 2024 ;29(4):654 - 676. Available from: https://doi.org/10.1134/S1560354724540013
Berti M. KAM theory for partial differential equations. Anal. Theory Appl. [Internet]. 2019 ;35:235–267. Available from: https://doi.org/10.4208/ata.oa-0013
Berti M, Biasco L, Procesi M. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
Berti M, Biasco L, Procesi M. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
Rossi M, Cicconofri G, Beran A, Noselli G, DeSimone A. Kinematics of flagellar swimming in Euglena gracilis: Helical trajectories and flagellar shapes. Proceedings of the National Academy of Sciences [Internet]. 2017 ;114:13085-13090. Available from: https://www.pnas.org/content/114/50/13085
Bertola M, Cafasso M. The Kontsevich matrix integral: convergence to the Painlevé hierarchy and Stokes' phenomenon. Comm. Math. Phys [Internet]. 2017 ;DOI 10.1007/s00220-017-2856-3. Available from: http://arxiv.org/abs/1603.06420
Boscain U, Chambrion T, Gauthier J-P. On the K+P problem for a three-level quantum system: optimality implies resonance. J.Dynam. Control Systems 8 (2002),no.4, 547 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1601

Pages

Sign in