MENU

You are here

Publications

Export 1837 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Guzzetti D. Solving the Sixth Painlevé Equation: Towards the Classification of all the Critical Behaviors and the Connection Formulae. Int Math Res Notices (2012) 2012 (6): 1352-1413 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6093
Guzzetti D. Solving PVI by Isomonodromy Deformations. In: Painlevé equations and related topics : proceedings of the international conference, Saint Petersburg, Russia, June 17-23, 2011 / Aleksandr Dmitrievich Briuno; Alexander B Batkhin. - Berlin : De Gruyter, [2012]. - p. 101-105. Painlevé equations and related topics : proceedings of the international conference, Saint Petersburg, Russia, June 17-23, 2011 / Aleksandr Dmitrievich Briuno; Alexander B Batkhin. - Berlin : De Gruyter, [2012]. - p. 101-105. SISSA; 2011. Available from: http://hdl.handle.net/1963/6522
Vidossich G. Solving Honig generic problem about Volterra integral equations. Bull. Polish Acad. Sci. Math. 44 (1996), no. 4, 495--498 [Internet]. 1996 . Available from: http://hdl.handle.net/1963/941
Vidossich G. On the solvability of boundary value problems for higher order ordinary differential equations (Revised version). Nonlinear Anal. 13 (1989), no. 10, 1171-1179 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/662
Vidossich G. On the solvability of boundary value problems for higher order ordinary differential equations. Nonlinear Anal. 13 (1989), no. 10, 1171-179 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/631
Berti M. Soluzioni periodiche di PDEs Hamiltoniane. Bollettino dell\\\'Unione Matematica Italiana Serie 8 7-B (2004), p. 647-661 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/4582
Ambrosetti A, Coti Zelati V. Solutions with minimal period for Hamiltonian systems in a potential well. Ann. Inst. H. Poincare Anal. Non Lineaire 4 (1987), no. 3, 275-296 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/466
Mahmoudi F, Malchiodi A. Solutions to the nonlinear Schroedinger equation carrying momentum along a curve. Part II: proof of the existence result.; 2007. Available from: http://hdl.handle.net/1963/2111
Mahmoudi F, Malchiodi A, Montenegro M. Solutions to the nonlinear Schroedinger equation carrying momentum along a curve. Part I: study of the limit set and approximate solutions.; 2007. Available from: http://hdl.handle.net/1963/2112
Zagatti S. Solutions of vectorial Hamilton-Jacobi equations and minimizers of nonquasiconvex functionals. J. Math. Anal. Appl. 335 (2007) 1143-1160 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2763
Ianni I, Vaira G. Solutions of the Schrödinger–Poisson problem concentrating on spheres, part I: necessary conditions. Mathematical Models and Methods in Applied Sciences [Internet]. 2009 ;19:707-720. Available from: https://doi.org/10.1142/S0218202509003589
Dal Maso G. Solutions of Neumann problems in domains with cracks and applications to fracture mechanics. [Internet]. 2005 . Available from: http://hdl.handle.net/1963/1684
Ambrosetti A, Malchiodi A, Ni W-M. Solutions concentrating on spheres to symmetric singularly perturbed problems. C.R.Math.Acad.Sci. Paris 335 (2002),no.2,145-150 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1594
Malchiodi A. Solutions concentrating at curves for some singularly perturbed elliptic problems. C. R. Acad. Sci. Paris, Ser. I 338 (2004) 775-780 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/4869
Ambrosetti A, Cerami G, Ruiz D. Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn. J. Funct. Anal. 254 (2008) 2816-2845 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2175
Grava T, Claeys T. Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit. SIAM J. Math. Anal. 42 (2010) 2132-2154 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3839
Coclite GM, Georgiev V. Solitary waves for Maxwell Schrodinger equations. Electron. J. Differential Equations (2004) 94 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1582
Ambrosi D, Pezzuto S, Riccobelli D, Stylianopoulos T, Ciarletta P. Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth. J. Elast. 2017 ;129:107–124.
Giomi L. Softly Constrained Films. [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6563
DeSimone A, Adams J, Conti S. Soft elasticity and microstructure in smectic C elastomers.; 2007. Available from: http://hdl.handle.net/1963/1811
Gazzini M, Musina R. On a Sobolev type inequality related to the weighted p-Laplace operator. J. Math. Anal. Appl. 352 (2009) 99-111 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2613
Berti M, Bolle P. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
Berti M, Bolle P. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
Bertola M, Katsevich A, Tovbis A. On Sobolev instability of the interior problem of tomography. Journal of Mathematical Analysis and Applications. 2016 .
Giani S, Grubisic L, Heltai L, Mulita O. Smoothed-adaptive perturbed inverse iteration for elliptic eigenvalue problems. Computational Methods in Applied Mathematics. 2021 ;21:385-405.

Pages

Sign in