Export 437 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Large KAM tori for perturbations of the dNLS equation.; 2016. Available from: http://preprints.sissa.it/handle/1963/35284
. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. Benjamin-Feir Instability of Stokes Waves in Finite Depth. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. 2023 ;247:91.
. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
. Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions.; 2017. Available from: http://preprints.sissa.it/handle/1963/35285
. Existence and stability of quasi-periodic solutions for derivative wave equations. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2013 ;24:199-214.
. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
. Local Well Posedness of the Euler–Korteweg Equations on $$\mathbb T}^d}$$. [Internet]. 2021 ;33(3):1475 - 1513. Available from: https://doi.org/10.1007/s10884-020-09927-3
. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
. Non-compactness and multiplicity results for the Yamabe problem on Sn. J. Funct. Anal. 180 (2001) 210-241 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1345
. Quadratic Life Span of Periodic Gravity-capillary Water Waves. [Internet]. 2021 ;3(1):85 - 115. Available from: https://doi.org/10.1007/s42286-020-00036-8
. Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs. Communications in Mathematical Physics. 2011 ;305:741-796.
. Benjamin-Feir instability of Stokes waves. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI. 2022 ;33:399-412.
. Bifurcation of free vibrations for completely resonant wave equations. Boll. Unione Mat. Ital. Sez. B 7 (2004) 519-528 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2245
. Periodic orbits close to elliptic tori and applications to the three-body problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004) 87-138 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2985
. Soluzioni periodiche di PDEs Hamiltoniane. Bollettino dell\\\'Unione Matematica Italiana Serie 8 7-B (2004), p. 647-661 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/4582
. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations 31 (2006) 959 - 985 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2234
. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
. On the analyticity of the Dirichlet-Neumann operator and Stokes waves. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI. 2022 ;33:611-650.
. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
. Diffusion time and splitting of separatrices for nearly integrable. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 2000, 11, 235 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1547
. Arnold's Diffusion in nearly integrable isochronous Hamiltonian systems. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1554
. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm.Math.Phys. 243 (2003) no.2, 315 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1648
.