Export 475 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Periodic solutions of nonlinear wave equations with non-monotone forcing terms. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 117-124 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4581
. A functional analysis approach to Arnold diffusion. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2002 ;19:395–450. Available from: https://doi.org/10.1016/S0294-1449(01)00084-1
. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
. Birkhoff normal form and long time existence for periodic gravity water waves. Comm. Pure Appl. Math. [Internet]. 2023 ;76:1416–1494. Available from: https://doi.org/10.1002/cpa.22041
. Quasi-periodic standing wave solutions of gravity-capillary water waves. Mem. Amer. Math. Soc. [Internet]. 2020 ;263:v+171. Available from: https://doi.org/10.1090/memo/1273
. Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134 (2006) 359-419 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2161
. Nonlinear oscillations of Hamiltonian PDEs. Birkhäuser Boston, Inc., Boston, MA; 2007 p. xiv+180.
. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2005 ;16:109–116.
. Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs. Communications in Mathematical Physics. 2011 ;305:741-796.
. Stokes waves at the critical depth are modulationally unstable. Comm. Math. Phys. [Internet]. 2024 ;405:Paper No. 56, 67. Available from: https://doi.org/10.1007/s00220-023-04928-x
. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1998 ;9:167–175.
. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
. Birkhoff normal form for gravity water waves. Water Waves [Internet]. 2021 ;3:117–126. Available from: https://doi.org/10.1007/s42286-020-00024-y
. Reducibility of Klein-Gordon equations with maximal order perturbations. [Internet]. 2024 . Available from: https://arxiv.org/abs/2402.11377
. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
. Quasi-periodic solutions of PDEs. In: Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. École Polytech., Palaiseau; 2013. p. Exp. No. XXX, 11.
. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm. Math. Phys. [Internet]. 2003 ;243:315–328. Available from: https://doi.org/10.1007/s00220-003-0972-8
. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
. Time quasi-periodic vortex patches of Euler equation in the plane. Invent. Math. [Internet]. 2023 ;233:1279–1391. Available from: https://doi.org/10.1007/s00222-023-01195-4
. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
. . Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations [Internet]. 2006 ;31:959–985. Available from: https://doi.org/10.1080/03605300500358129
. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
.