MENU

You are here

Publications

Export 645 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Bianchini S, Bressan A. On a Lyapunov functional relating shortening curves and viscous conservation laws. Nonlinear Anal. 51 (2002) 649-662 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1337
Bianchini S, Bressan A. On a Lyapunov functional relating shortening curves and viscous conservation laws. Nonlinear Anal. 51 (2002) 649-662 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1337
Alberti G, Bianchini S, Crippa G. On the Lp-differentiability of certain classes of functions. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34695
Mola A, Bordonaro G, Hajj MR. Low-Frequency Variations of Force Coefficients on Square Cylinders with Sharp and Rounded Corners. Journal of Structural Engineering [Internet]. 2009 ;135:828–835. Available from: https://doi.org/10.1061/(asce)st.1943-541x.0000034
Bertola M. On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation. Nonlinearity [Internet]. 2012 ;25:1179–1185. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/0951-7715/25/4/1179
Bruzzo U, Rubtsov V. On localization in holomorphic equivariant cohomology. Central European Journal of Mathematics, Volume 10, Issue 4, August 2012, Pages 1442-1454 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6584
Berti M, Maspero A, Murgante F. Local Well Posedness of the Euler–Korteweg Equations on $$\mathbb T}^d}$$. [Internet]. 2021 ;33(3):1475 - 1513. Available from: https://doi.org/10.1007/s10884-020-09927-3
Bonacini M, Cristoferi R. Local and global minimality results for a nonlocal isoperimetric problem on R^N. SIAM Journal on Mathematical Analysis [Internet]. 2014 ;46(4):2310-2349. Available from: http://hdl.handle.net/1963/6984
Boscain U, Charlot G, Ghezzi R, Sigalotti M. Lipschitz Classification of Almost-Riemannian Distances on Compact Oriented Surfaces. Journal of Geometric Analysis [Internet]. 2013 ;23:438–455. Available from: https://doi.org/10.1007/s12220-011-9262-4
Bonelli G, Tanzini A, Zhao J. The Liouville side of the vortex. JHEP 09(2011)096 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4304
Maier M, Bardelloni M, Heltai L. LinearOperator – a generic, high-level expression syntax for linear algebra. COMPUTERS & MATHEMATICS WITH APPLICATIONS. 2016 ;72:1–24.
Mason P, Salmoni R, Boscain U, Chitour Y. Limit Time Optimal Syntheses for a control-affine system on S². SIAM J. Control Optim. 47 (2008) 111-143 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1862
Bertola M, Gouthier D. Lie triple systems and warped products. Rend. Mat. Appl. (7). 2001 ;21:275–293.
Bressan A. A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova 110 (2003) 97-102 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/2914
Berti M, Kappeler T, Montalto R. Large KAM tori for perturbations of the dNLS equation.; 2016. Available from: http://preprints.sissa.it/handle/1963/35284
Bianchini S, Bonicatto P, Marconi E. Lagrangian representations for linear and nonlinear transport. Contemporary Mathematics. Fundamental Directions [Internet]. 2017 ;63:418–436. Available from: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=cmfd&paperid=327&option_lang=eng
Bianchini S, Bonicatto P, Marconi E. Lagrangian representations for linear and nonlinear transport. Contemporary Mathematics. Fundamental Directions [Internet]. 2017 ;63:418–436. Available from: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=cmfd&paperid=327&option_lang=eng
Bianchini S, Bonicatto P, Marconi E. A Lagrangian approach for scalar multi-d conservation laws.; 2017. Available from: http://preprints.sissa.it/handle/1963/35290
Bianchini S, Bonicatto P, Marconi E. A Lagrangian approach for scalar multi-d conservation laws.; 2017. Available from: http://preprints.sissa.it/handle/1963/35290
Bressan A, Liu T-P, Yang T. L-1 stability estimates for n x n conservation laws. Arch. Ration. Mech. Anal. 149 (1999), no. 1, 1--22 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3373

Pages

Sign in