Semistable and numerically effective principal (Higgs) bundles. Advances in Mathematics 226 (2011) 3655-3676 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3638
. The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry. Journal of Dynamical and Control Systems [Internet]. 2011 ;17 :141-161. Available from: http://hdl.handle.net/1963/4914
. Structure of level sets and Sard-type properties of Lipschitz maps. SISSA; 2011. Available from: http://hdl.handle.net/1963/4657
. Subharmonic solutions of planar Hamiltonian systems: a rotation number approach. Advanced Nonlinear Studies. 2011 ;11:77–103.
. Subharmonic solutions of planar Hamiltonian systems via the Poincaré́-Birkhoff theorem. Le Matematiche. 2011 ;66:115–122.
. Supercritical conformal metrics on surfaces with conical singularities. Int Math Res Notices (2011) 2011 (24): 5625-5643 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4095
. The Transition between the Gap Probabilities from the Pearcey to the Airy Process–a Riemann-Hilbert Approach. International Mathematics Research Notices. 2011 ;doi: 10.1093/imrn/rnr066:1-50.
. A uniqueness result for the continuity equation in two dimensions. SISSA; 2011. Available from: http://hdl.handle.net/1963/4663
. On 2-step, corank 2 nilpotent sub-Riemannian metrics. SIAM J. Control Optim., 50 (2012) 559–582 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6065
. On 2-step, corank 2 nilpotent sub-Riemannian metrics. SIAM J. Control Optim., 50 (2012) 559–582 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6065
. Concentration on circles for nonlinear Schrödinger–Poisson systems with unbounded potentials vanishing at infinity. Communications in Contemporary Mathematics [Internet]. 2012 ;14:1250009. Available from: https://doi.org/10.1142/S0219199712500095
. Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratory-versatile bacterium Shewanella oneidensis. Nucleic Acids Research, Volume 40, Issue 15, August 2012, Pages 7132-7149 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6506
. A dynamical feedback model for adaptation in the olfactory transduction pathway. Biophysical Journal. Volume 102, Issue 12, 20 June 2012, Pages 2677-2686 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/7019
. A formula for Popp\'s volume in sub-Riemannian geometry. Analysis and Geometry in Metric Spaces, vol. 1 (2012), pages : 42-57 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6501
. Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation. Comm. Math. Phys. [Internet]. 2012 ;309:793–833. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00220-011-1383-x
. Gauge Theories on ALE Space and Super Liouville Correlation Functions. Lett. Math. Phys. 101 (2012) 103-124 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4305
. On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and Partial Differential Equations. Volume 43, Issue 3-4, March 2012, Pages 355-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6454
. On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and Partial Differential Equations. Volume 43, Issue 3-4, March 2012, Pages 355-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6454
. Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. Nanoscale. 2012 Mar; 4(5):1734-41. 2012 .
. Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. Nanoscale. 2012 Mar; 4(5):1734-41. 2012 .
. Introduction to Riemannian and sub-Riemannian geometry. SISSA; 2012. Available from: http://hdl.handle.net/1963/5877
. Introduction to Riemannian and sub-Riemannian geometry. SISSA; 2012. Available from: http://hdl.handle.net/1963/5877
. On localization in holomorphic equivariant cohomology. Central European Journal of Mathematics, Volume 10, Issue 4, August 2012, Pages 1442-1454 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6584
. On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation. Nonlinearity [Internet]. 2012 ;25:1179–1185. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/0951-7715/25/4/1179
. Moduli of symplectic instanton vector bundles of higher rank on projective space $\\mathbbP^3$. Central European Journal of Mathematics 10, nr. 4 (2012) 1232 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4656
.