Export 479 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
A functional analysis approach to Arnold diffusion. In: Symmetry and perturbation theory (Cala Gonone, 2001). Symmetry and perturbation theory (Cala Gonone, 2001). World Sci. Publ., River Edge, NJ; 2001. pp. 29–31. Available from: https://doi.org/10.1142/9789812794543_0004
. Bifurcation of free vibrations for completely resonant wave equations. Boll. Unione Mat. Ital. Sez. B 7 (2004) 519-528 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2245
. KAM theory for partial differential equations. Anal. Theory Appl. [Internet]. 2019 ;35:235–267. Available from: https://doi.org/10.4208/ata.oa-0013
. Time periodic solutions of completely resonant Klein-Gordon equations on $\mathbbS^3$. Ann. Inst. H. Poincaré C Anal. Non Linéaire . 2024 .
. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
. Local well posedness of the Euler-Korteweg equations on {$\Bbb T^d$}. Journal of Dynamics and Differential Equations [Internet]. 2021 ;33(3):1475 - 1513. Available from: https://doi.org/10.1007/s10884-020-09927-3
. A Nash-Moser approach to KAM theory. In: Hamiltonian partial differential equations and applications. Vol. 75. Hamiltonian partial differential equations and applications. Fields Inst. Res. Math. Sci., Toronto, ON; 2015. pp. 255–284. Available from: https://doi.org/10.1007/978-1-4939-2950-4_9
. Hamiltonian paradifferential Birkhoff normal form for water waves. Regul. Chaotic Dyn. [Internet]. 2023 ;28:543–560. Available from: https://doi.org/10.1134/S1560354723040032
. Periodic orbits close to elliptic tori and applications to the three-body problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). 2004 ;3:87–138.
. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
. Traveling quasi-periodic water waves with constant vorticity. Arch. Ration. Mech. Anal. [Internet]. 2021 ;240:99–202. Available from: https://doi.org/10.1007/s00205-021-01607-w
. Some remarks on a variational approach to Arnold's diffusion. Discrete Contin. Dynam. Systems [Internet]. 1996 ;2:307–314. Available from: https://doi.org/10.3934/dcds.1996.2.307
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
. On periodic elliptic equations with gradient dependence. Commun. Pure Appl. Anal. [Internet]. 2008 ;7:601–615. Available from: https://doi.org/10.3934/cpaa.2008.7.601
. On the analyticity of the Dirichlet-Neumann operator and Stokes waves. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2022 ;33:611–650. Available from: https://doi.org/10.4171/rlm/983
. Fast Arnold diffusion in systems with three time scales. Discrete Contin. Dyn. Syst. [Internet]. 2002 ;8:795–811. Available from: https://doi.org/10.3934/dcds.2002.8.795
. Long time dynamics of Schrödinger and wave equations on flat tori. J. Differential Equations [Internet]. 2019 ;267:1167–1200. Available from: https://doi.org/10.1016/j.jde.2019.02.004
. Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence. Annals of PDEs [Internet]. 2022 . Available from: https://arxiv.org/abs/2212.12255
. An abstract Nash-Moser theorem with parameters and applications to PDEs. Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis. 2010 ;27:377-399.
. Forced vibrations of wave equations with non-monotone nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 439-474 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2160
. KAM for PDEs. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:115–142. Available from: https://doi.org/10.1007/s40574-016-0067-z
. Pure gravity traveling quasi-periodic water waves with constant vorticity. Comm. Pure Appl. Math. [Internet]. 2024 ;77:990–1064. Available from: https://doi.org/10.1002/cpa.22143
. Periodic solutions of Hamiltonian PDEs. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8). 2004 ;7:647–661.
. Chaotic dynamics for perturbations of infinite-dimensional Hamiltonian systems. Nonlinear Anal. 48 (2002) 481-504 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1279
.