Cantor families of periodic solutions of wave equations with C k nonlinearities. Nonlinear Differential Equations and Applications. 2008 ;15:247-276.
. Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence. Annals of PDEs [Internet]. 2022 . Available from: https://arxiv.org/abs/2212.12255
. Quasi-periodic water waves. J. Fixed Point Theory Appl. [Internet]. 2017 ;19:129–156. Available from: https://doi.org/10.1007/s11784-016-0375-z
. Nonlinear vibrations of completely resonant wave equations. In: Fixed point theory and its applications. Vol. 77. Fixed point theory and its applications. Polish Acad. Sci. Inst. Math., Warsaw; 2007. pp. 49–60. Available from: https://doi.org/10.4064/bc77-0-4
. A functional analysis approach to Arnold diffusion. In: Symmetry and perturbation theory (Cala Gonone, 2001). Symmetry and perturbation theory (Cala Gonone, 2001). World Sci. Publ., River Edge, NJ; 2001. pp. 29–31. Available from: https://doi.org/10.1142/9789812794543_0004
. Full description of Benjamin-Feir instability of Stokes waves in deep water. Invent. Math. [Internet]. 2022 ;230:651–711. Available from: https://doi.org/10.1007/s00222-022-01130-z
. Local well posedness of the Euler-Korteweg equations on {$\Bbb T^d$}. Journal of Dynamics and Differential Equations [Internet]. 2021 ;33(3):1475 - 1513. Available from: https://doi.org/10.1007/s10884-020-09927-3
. KAM theory for partial differential equations. Anal. Theory Appl. [Internet]. 2019 ;35:235–267. Available from: https://doi.org/10.4208/ata.oa-0013
. A Nash-Moser approach to KAM theory. In: Hamiltonian partial differential equations and applications. Vol. 75. Hamiltonian partial differential equations and applications. Fields Inst. Res. Math. Sci., Toronto, ON; 2015. pp. 255–284. Available from: https://doi.org/10.1007/978-1-4939-2950-4_9
. Reducibility of Klein-Gordon equations with maximal order perturbations. [Internet]. 2024 . Available from: https://arxiv.org/abs/2402.11377
. Periodic orbits close to elliptic tori and applications to the three-body problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). 2004 ;3:87–138.
. Hamiltonian paradifferential Birkhoff normal form for water waves. Regul. Chaotic Dyn. [Internet]. 2023 ;28:543–560. Available from: https://doi.org/10.1134/S1560354723040032
. Non-compactness and multiplicity results for the Yamabe problem on Sn. J. Funct. Anal. 180 (2001) 210-241 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1345
. Mesoscopic colonization in a spectral band. J. Phys. A [Internet]. 2009 ;42:415204, 17. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/41/415204
. Spectra of random Hermitian matrices with a small-rank external source: the supercritical and subcritical regimes. J. Stat. Phys. [Internet]. 2013 ;153:654–697. Available from: http://dx.doi.org/10.1007/s10955-013-0845-2
. Symplectic geometry of the moduli space of projective structures in homological coordinates. Inventiones Mathematicae [Internet]. 2017 :1–56. Available from: https://arxiv.org/abs/1506.07918
. Effective inverse spectral problem for rational Lax matrices and applications. Int. Math. Res. Not. IMRN. 2007 :Art. ID rnm103, 39.
. The Transition between the Gap Probabilities from the Pearcey to the Airy Process–a Riemann-Hilbert Approach. International Mathematics Research Notices. 2011 ;doi: 10.1093/imrn/rnr066:1-50.
. Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane. Symmetry, Integrability and Geometry. Methods and Applications. 2018 ;14.
. On Sobolev instability of the interior problem of tomography. Journal of Mathematical Analysis and Applications. 2016 .
. Mixed correlation functions of the two-matrix model. J. Phys. A. 2003 ;36:7733–7750.
. The dependence on the monodromy data of the isomonodromic tau function. Comm. Math. Phys. [Internet]. 2010 ;294:539–579. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00220-009-0961-7
. Cauchy-Laguerre two-matrix model and the Meijer-G random point field. Comm. Math. Phys. [Internet]. 2014 ;326:111–144. Available from: http://dx.doi.org/10.1007/s00220-013-1833-8
. A general construction of conformal field theories from scalar anti-de Sitter quantum field theories. Nuclear Phys. B. 2000 ;587:619–644.
. The partition function of the two-matrix model as an isomonodromic τ function. J. Math. Phys. [Internet]. 2009 ;50:013529, 17. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1063/1.3054865
.