MENU

You are here

Publications

Export 1852 results:
Journal Article
Agrachev AA. Well-posed infinite horizon variational problems on a compact manifold. Proceedings of the Steklov Institute of Mathematics. Volume 268, Issue 1, 2010, Pages 17-31 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6458
Fonda A, Klun G, Sfecci A. Well-Ordered and Non-Well-Ordered Lower and Upper Solutions for Periodic Planar Systems. Advanced Nonlinear Studies [Internet]. 2021 ;21(2):397 - 419. Available from: https://doi.org/10.1515/ans-2021-2117
Venturi L, Torlo D, Ballarin F, Rozza G. Weighted Reduced Order Methods for Parametrized Partial Differential Equations with Random Inputs. PoliTO Springer Series [Internet]. 2019 :27-40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084009379&doi=10.1007%2f978-3-030-04870-9_2&partnerID=40&md5=446bcc1f331167bbba67bc00fb170150
Chen P, Quarteroni A, Rozza G. A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM Journal on Numerical Analysis. 2013 ;51:3163–3185.
Balogh F, Krauczi É. Weighted quantile correlation test for the logistic family. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35025
Carere G, Strazzullo M, Ballarin F, Rozza G, Stevenson R. A weighted POD-reduction approach for parametrized PDE-constrained optimal control problems with random inputs and applications to environmental sciences. Computers and Mathematics with Applications [Internet]. 2021 ;102:261-276. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117948561&doi=10.1016%2fj.camwa.2021.10.020&partnerID=40&md5=cb57d59a6975a35315b2cf5d0e3a6001
.Venturi L, Ballarin F, Rozza G. A Weighted POD Method for Elliptic PDEs with Random Inputs. Journal of Scientific Computing [Internet]. 2019 ;81:136-153. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053798049&doi=10.1007%2fs10915-018-0830-7&partnerID=40&md5=5cad501b6ef1955da55868807079ee5d
Chen P, Quarteroni A, Rozza G. A weighted empirical interpolation method: A priori convergence analysis and applications. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35021
Saracco G. Weighted Cheeger sets are domains of isoperimetry. Manuscripta Math. 2018 ;156:371–381.
Carlotto A, Malchiodi A. Weighted barycentric sets and singular Liouville equations on compact surfaces. Journal of Functional Analysis 262 (2012) 409-450 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5218
Tasso E. Weak formulation of elastodynamics in domains with growing cracks. [Internet]. 2020 ;199(4):1571 - 1595. Available from: https://doi.org/10.1007/s10231-019-00932-y
Dal Maso G, De Giorgi E, Modica L. Weak convergence of measures on spaces of semicontinuous functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 79 (1985), no. 5, 98-106 [Internet]. 1985 . Available from: http://hdl.handle.net/1963/463
Bertola M, Gouthier D. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
Bonelli G, Sciarappa A, Tanzini A, Vasko P. Vortex Partition Functions, Wall Crossing and Equivariant Gromov–Witten Invariants. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34652
Agrachev AA, Barilari D, Paoli E. Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. arXiv preprint arXiv:1602.08745. 2016 .
Crismale V, Lazzaroni G. Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calculus of Variations and Partial Differential Equations [Internet]. 2016 ;55:17. Available from: https://doi.org/10.1007/s00526-015-0947-6
Racca S. A Viscosity-driven crack evolution. Advances in Calculus of Variations 5 (2012) 433-483 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5130
Coclite GM, Risebro NH. Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 4 (2007) 771-795 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2907
Zagatti S. On viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 361 (2009) 41-59 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3420
Crasta G, Piccoli B. Viscosity solutions and uniquenessfor systems of inhomogeneous balance laws. Discrete Contin. Dynam. Systems 3 (1997), no. 4, 477--5 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/969
Cangiani A, Chatzipantelidis P, Diwan G, Georgoulis EH. Virtual element method for quasilinear elliptic problems. IMA Journal of Numerical Analysis [Internet]. 2019 ;40:2450-2472. Available from: https://doi.org/10.1093/imanum/drz035
Dubrovin B, Youjin Z. Virasoro Symmetries of the Extended Toda Hierarchy. Comm. Math.\\nPhys. 250 (2004) 161-193. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2544
Liu Z, McBride A, Saxena P, Heltai L, Qu Y, Steinmann P. Vibration Analysis of Piezoelectric Kirchhoff-Love shells based on Catmull-Clark Subdivision Surfaces. International Journal for Numerical Methods in Engineering. 2022 .
Bonelli G, Tanzini A, Jian Z. Vertices, vortices & interacting surface operators. JHEP 06(2012)178 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4134
Cellina A, Zagatti S. A version of Olech\\\'s lemma in a problem of the calculus of variations. SIAM J. Control Optim. 32 (1994) 1114-1127 [Internet]. 1994 . Available from: http://hdl.handle.net/1963/3514

Pages

Sign in