A weighted empirical interpolation method: A priori convergence analysis and applications. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35021
. Weighted Cheeger sets are domains of isoperimetry. Manuscripta Math. 2018 ;156:371–381.
. Weighted barycentric sets and singular Liouville equations on compact surfaces. Journal of Functional Analysis 262 (2012) 409-450 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5218
. Weak formulation of elastodynamics in domains with growing cracks. [Internet]. 2020 ;199(4):1571 - 1595. Available from: https://doi.org/10.1007/s10231-019-00932-y
. Weak convergence of measures on spaces of semicontinuous functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 79 (1985), no. 5, 98-106 [Internet]. 1985 . Available from: http://hdl.handle.net/1963/463
. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
. Vortex Partition Functions, Wall Crossing and Equivariant Gromov–Witten Invariants. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34652
. Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. arXiv preprint arXiv:1602.08745. 2016 .
. Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calculus of Variations and Partial Differential Equations [Internet]. 2016 ;55:17. Available from: https://doi.org/10.1007/s00526-015-0947-6
. A Viscosity-driven crack evolution. Advances in Calculus of Variations 5 (2012) 433-483 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5130
. Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 4 (2007) 771-795 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2907
. On viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 361 (2009) 41-59 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3420
. Viscosity solutions and uniquenessfor systems of inhomogeneous balance laws. Discrete Contin. Dynam. Systems 3 (1997), no. 4, 477--5 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/969
. Virtual element method for quasilinear elliptic problems. IMA Journal of Numerical Analysis [Internet]. 2019 ;40:2450-2472. Available from: https://doi.org/10.1093/imanum/drz035
. Virasoro Symmetries of the Extended Toda Hierarchy. Comm. Math.\\nPhys. 250 (2004) 161-193. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2544
. Vibration Analysis of Piezoelectric Kirchhoff-Love shells based on Catmull-Clark Subdivision Surfaces. International Journal for Numerical Methods in Engineering. 2022 .
. Vertices, vortices & interacting surface operators. JHEP 06(2012)178 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4134
. A version of Olech\\\'s lemma in a problem of the calculus of variations. SIAM J. Control Optim. 32 (1994) 1114-1127 [Internet]. 1994 . Available from: http://hdl.handle.net/1963/3514
. The vector measures whose range is strictly convex. J. Math. Anal. Appl. 232 (1999) 1-19 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3546
. A variational model for the quasi-static growth of fractional dimensional brittle fractures. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6983
. A variational model for quasistatic crack growth in nonlinear elasticity: some qualitative properties of the solutions. Boll. Unione Mat. Ital. (9) 2 (2009) 371-390 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2675
. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
. A variational method in image segmentation: existence and approximation result. Acta Math. 168 (1992), no.1-2, p. 89-151 [Internet]. 1992 . Available from: http://hdl.handle.net/1963/808
. Variational inequalities for the biharmonic operator with variable obstacles. Ann. Mat. Pura Appl. (4) 153 (1988), 203-227 (1989) [Internet]. 1988 . Available from: http://hdl.handle.net/1963/531
. Variational implementation of immersed finite element methods. Computer Methods in Applied Mechanics and Engineering. Volume 229-232, 1 July 2012, Pages 110-127 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6462
.