MENU

You are here

Publications

Export 1837 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Bertola M, Korotkin DA. Discriminant circle bundles over local models of Strebel graphs and Boutroux curves. Teoret. Mat. Fiz. [Internet]. 2018 ;197:163–207. Available from: https://doi.org/10.4213/tmf9513
Caravenna L, Daneri S. The disintegration of the Lebesgue measure on the faces of a convex function. J. Funct. Anal. 258 (2010) 3604-3661 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3622
Caravenna L. The Disintegration Theorem and Applications to Optimal Mass Transportation. [Internet]. 2009 . Available from: http://hdl.handle.net/1963/5900
Dipierro S, Palatucci G, Valdinoci E. Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting. SISSA; 2013. Available from: http://hdl.handle.net/1963/7124
Scala R, Van Goethem N. Dislocations at the continuum scale: functional setting and variational properties.; 2014. Available from: http://cvgmt.sns.it/paper/2294/
Dubrovin B. Dispersion relations for non-linear waves and the Schottky problem. In: Important developments in soliton theory / A. S. Fokas, V. E. Zakharov (eds.) - Berlin : Springer-Verlag, 1993. - pages : 86-98. Important developments in soliton theory / A. S. Fokas, V. E. Zakharov (eds.) - Berlin : Springer-Verlag, 1993. - pages : 86-98. SISSA; 1993. Available from: http://hdl.handle.net/1963/6480
Casati M. Dispersive deformations of the Hamiltonian structure of Euler's equations. 2015 .
Iandoli F, Scandone R. Dispersive Estimates for Schrödinger Operators with Point Interactions in ℝ3. In: Michelangeli A, Dell'Antonio G Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Cham: Springer International Publishing; 2017. pp. 187–199. Available from: https://doi.org/10.1007/978-3-319-58904-6_11
Cavalletti F, Gigli N, Santarcangelo F. Displacement convexity of Entropy and the distance cost Optimal Transportation. Annales de la Faculté des sciences de Toulouse : Mathématiques [Internet]. 2021 ;Ser. 6, 30:411–427. Available from: https://afst.centre-mersenne.org/articles/10.5802/afst.1679/
Boffi D, Gastaldi L, Heltai L. A distributed lagrange formulation of the finite element immersed boundary method for fluids interacting with compressible solids. In: Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Vol. 16. Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Cham: Springer International Publishing; 2018. pp. 1–21. Available from: https://arxiv.org/abs/1712.02545v1
Beretti T. On the distribution of the van der Corput sequences. Archiv der Mathematik. 2023 .
Bruzzo U, Dalakov P. Donagi–Markman cubic for the generalised Hitchin system.; 2014. Available from: http://hdl.handle.net/1963/7253
Fonda A, Garrione M. Double resonance with Landesman–Lazer conditions for planar systems of ordinary differential equations. Journal of Differential Equations [Internet]. 2011 ;250:1052 - 1082. Available from: http://www.sciencedirect.com/science/article/pii/S0022039610002901
Coates D, Luzzatto S, Mubarak M. Doubly Intermittent Full Branch Maps with Critical Points and Singularities. [Internet]. 2022 . Available from: https://arxiv.org/abs/2209.12725
Mubarak M, Schindler TI. Doubly Intermittent Maps with Critical Points, Unbounded Derivatives and Regularly Varying Tail. [Internet]. 2022 . Available from: https://arxiv.org/abs/2211.15648
Sillari L, Tomassini A. Doulbeault and J-invariant Cohomologies on Almost Complex Manifolds. Complex Analysis and Operator Theory [Internet]. 2021 ;15. Available from: https://link.springer.com/article/10.1007/s11785-021-01156-w
Berti M, Biasco L, Bolle P. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
Pichi F, Strazzullo M, Ballarin F, Rozza G. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction. ESAIM: M2AN [Internet]. 2022 ;56(4):1361 - 1400. Available from: https://doi.org/10.1051/m2an/2022044
Bertola M, Eynard B, Harnad J. Duality, biorthogonal polynomials and multi-matrix models. Comm. Math. Phys. 2002 ;229:73–120.
Bertola M, Eynard B, Kharnad D. The duality of spectral curves that arises in two-matrix models. Teoret. Mat. Fiz. 2003 ;134:32–45.
Andreuzzi F, Demo N, Rozza G. A dynamic mode decomposition extension for the forecasting of parametric dynamical systems. arXiv preprint arXiv:2110.09155. 2021 .
Caponi M, Sapio F. A dynamic model for viscoelastic materials with prescribed growing cracks. [Internet]. 2020 ;199(4):1263 - 1292. Available from: https://doi.org/10.1007/s10231-019-00921-1
Sapio F. A dynamic model for viscoelasticity in domains with time-dependent cracks. [Internet]. 2021 ;28(6):67. Available from: https://doi.org/10.1007/s00030-021-00729-0
De Palo G, Boccaccio A, Miri A, Menini A, Altafini C. A dynamical feedback model for adaptation in the olfactory transduction pathway. Biophysical Journal. Volume 102, Issue 12, 20 June 2012, Pages 2677-2686 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/7019
Agrachev AA, Caponigro M. Dynamics control by a time-varying feedback. Journal of Dynamical and Control Systems. Volume 16, Issue 2, April 2010, Pages :149-162 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6461

Pages

Sign in