KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris [Internet]. 2014 ;352(7-8):603-607. Available from: http://urania.sissa.it/xmlui/handle/1963/35067
. KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris [Internet]. 2014 ;352(7-8):603-607. Available from: http://urania.sissa.it/xmlui/handle/1963/35067
. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen. 2014 :1-66.
. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen. 2014 :1-66.
. KAM for PDEs. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:115–142. Available from: https://doi.org/10.1007/s40574-016-0067-z
. KAM for gravity water waves in finite depth. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2018 ;29:215–236. Available from: https://doi.org/10.4171/RLM/802
. KAM for gravity water waves in finite depth. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2018 ;29:215–236. Available from: https://doi.org/10.4171/RLM/802
. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
. Iterative map-making with two-level preconditioning for polarized cosmic microwave background data sets. A worked example for ground-based experiments. ASTRONOMY & ASTROPHYSICS [Internet]. 2018 ;618:1–14. Available from: https://arxiv.org/abs/1801.08937
. Isomonodromic deformation of resonant rational connections. IMRP Int. Math. Res. Pap. 2005 :565–635.
. Inversion formulae for the $\romancosh$-weighted Hilbert transform. Proc. Amer. Math. Soc. [Internet]. 2013 ;141:2703–2718. Available from: http://dx.doi.org/10.1090/S0002-9939-2013-11642-4
. Invariant manifolds for a singular ordinary differential equation. Journal of Differential Equations 250 (2011) 1788-1827 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/2554
. Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851-1878 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2144
. The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009) 2621-2655 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2669
. An instability of the Godunov scheme. Comm. Pure Appl. Math. 59 (2006) 1604-1638 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2183
. An instability of the Godunov scheme. Comm. Pure Appl. Math. 59 (2006) 1604-1638 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2183
. An improved geometric inequality via vanishing moments, with applications to singular Liouville equations. Communications in Mathematical Physics 322, nr.2 (2013): 415-452 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6561
. An ill posed Cauchy problem for a hyperbolic system in two space dimensions. [Internet]. 2003 . Available from: http://hdl.handle.net/1963/2913
. Hyperbolic Systems of Conservation Laws. Rev. Mat. Complut. 12 (1999) 135-200 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1855
. Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. Nanoscale. 2012 Mar; 4(5):1734-41. 2012 .
. Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. Nanoscale. 2012 Mar; 4(5):1734-41. 2012 .
. A hybrid reduced order method for modelling turbulent heat transfer problems. Computers & Fluids [Internet]. 2020 ;208:104615. Available from: https://arxiv.org/abs/1906.08725
.