Free energy of the two-matrix model/dToda tau-function. Nuclear Phys. B. 2003 ;669:435–461.
. Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices. Commun. Math. Phys. [Internet]. 2015 ;337:1077–1141. Available from: http://link.springer.com/article/10.1007/s00220-015-2327-7
. First colonization of a hard-edge in random matrix theory. Constr. Approx. [Internet]. 2010 ;31:231–257. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00365-009-9052-4
. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
. Zeros of Large Degree Vorob'ev-Yablonski Polynomials via a Hankel Determinant Identity. International Mathematics Research Notices. 2014 ;rnu239.
. The Cauchy two–matrix model. Comm. Math. Phys. 2009 ;287:983–1014.
. Noncommutative Painlevé Equations and Systems of Calogero Type. Comm. Math. Phys. 2018 .
. Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. J. Stat. Phys. [Internet]. 2012 ;146:475–518. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s10955-011-0409-2
. The PDEs of biorthogonal polynomials arising in the two-matrix model. Math. Phys. Anal. Geom. 2006 ;9:23–52.
. The duality of spectral curves that arises in two-matrix models. Teoret. Mat. Fiz. 2003 ;134:32–45.
. Cubic string boundary value problems and Cauchy biorthogonal polynomials. J. Phys. A [Internet]. 2009 ;42:454006, 13. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/45/454006
. Frobenius manifold structure on orbit space of Jacobi groups. II. Differential Geom. Appl. 2000 ;13:213–233.
. The gap probabilities of the tacnode, Pearcey and Airy point processes, their mutual relationship and evaluation. Random Matrices: Theory and Applications [Internet]. 2013 ;02:1350003. Available from: http://www.worldscientific.com/doi/abs/10.1142/S2010326313500032
. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 2007 ;26:383–430.
. The Kontsevich matrix integral: convergence to the Painlevé hierarchy and Stokes' phenomenon. Comm. Math. Phys [Internet]. 2017 ;DOI 10.1007/s00220-017-2856-3. Available from: http://arxiv.org/abs/1603.06420
. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34897
. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4906
. Quadratic Interaction Functional for General Systems of Conservation Laws. Communications in Mathematical Physics. 2015 ;338:1075–1152.
. On optimality of c-cyclically monotone transference plans. Comptes Rendus Mathematique 348 (2010) 613-618 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/4023
. Invariant manifolds for a singular ordinary differential equation. Journal of Differential Equations 250 (2011) 1788-1827 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/2554
. A case study in vanishing viscosity. Discrete Cont. Dyn. Syst. 7 (2001) 449-476 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3091
. Stability of L-infinity solutions for hyperbolic systems with coinciding shocks and rarefactions. Siam J. Math. Anal., 2001, 33, 959 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1523
. SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension. Rend. Istit. Mat. Univ. Trieste. 2012 ;44:439–472.
. Invariant Manifolds for Viscous Profiles of a Class of Mixed Hyperbolic-Parabolic Systems.; 2008. Available from: http://hdl.handle.net/1963/3400
. Dissipative solutions to Hamiltonian systems. Kinetic and Related Models. 2024 ;17.
.