MENU

You are here

Publications

Export 708 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Berti M, Bolle P. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
Berti M, Bolle P. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
Bruzzo U, Rubtsov V. Holomorphic equivariant cohomology of Atiyah algebroids and localization.; 2009. Available from: http://hdl.handle.net/1963/3774
Biswas I, Bruzzo U. Holomorphic Cartan geometry on manifolds with numerically effective tangent bundle. Differential Geometry and its Applications 29 (2011) 147-153 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3830
Biswas I, Bruzzo U. Holomorphic Cartan geometry on manifolds with numerically effective tangent bundle. Differential Geometry and its Applications 29 (2011) 147-153 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3830
Bonelli G, Tanzini A. The holomorphic anomaly for open string moduli. JHEP 10 (2007) 060 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2113
Bonelli G, Tanzini A. Hitchin systems, N=2 gauge theories and W-gravity. Phys. Lett. B 691 (2010) 111-115 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3831
Bruzzo U, Maciocia A. Hilbert schemes of points on some K3 surfaces and Gieseker stable boundles. MATH PROC CAMBRIDGE 120: 255-261 Part 2 [Internet]. 1994 . Available from: http://hdl.handle.net/1963/937
Bruzzo U. Hilbert schemes of points of OP1(-n) as quiver varieties. [Internet]. 2015 . Available from: http://urania.sissa.it/xmlui/handle/1963/34487
Boscain U, Sigalotti M. High-order angles in almost-Riemannian geometry.; 2007. Available from: http://hdl.handle.net/1963/1995
Zancanaro M, Ballarin F, Perotto S, Rozza G. Hierarchical model reduction techniques for flow modeling in a parametrized setting. Multiscale Modeling and Simulation. 2021 ;19:267-293.
Berti M. Heteroclinic solutions for perturbed second order systems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1997 ;8:251–262.
Agrachev AA, Barilari D, Boscain U. On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and Partial Differential Equations. Volume 43, Issue 3-4, March 2012, Pages 355-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6454
Agrachev AA, Barilari D, Boscain U. On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and Partial Differential Equations. Volume 43, Issue 3-4, March 2012, Pages 355-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6454
Bagnara M, Gennaioli L, Leccese GMaria, Luongo E. On the Hausdorff Measure of $\mathbbR^n$ with the Euclidean Topology. Real Analysis Exchange [Internet]. 2023 ;48. Available from: http://dx.doi.org/10.14321/realanalexch.48.1.1649735306
Bertola M, Ferrer APrats. Harish-Chandra integrals as nilpotent integrals. Int. Math. Res. Not. IMRN. 2008 :Art. ID rnn062, 15.
Balogh F, Bertola M, Bothner T. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
Balogh F, Bertola M, Bothner T. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
Balogh F, Bertola M, Bothner T. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
Berti M, Maspero A, Murgante F. Hamiltonian paradifferential Birkhoff normal form for water waves. Regul. Chaotic Dyn. [Internet]. 2023 ;28:543–560. Available from: https://doi.org/10.1134/S1560354723040032
Berti M, Maspero A, Murgante F. Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence. Annals of PDEs [Internet]. 2022 . Available from: https://arxiv.org/abs/2212.12255

Pages

Sign in