Estimates on path functionals over Wasserstein Spaces. SIAM J. Math. Anal. 42 (2010) 1179-1217 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3583
. Failure of the Chain Rule in the Non Steady Two-Dimensional Setting. In: Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg. Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg. Cham: Springer International Publishing; 2018. pp. 33–60. Available from: https://doi.org/10.1007/978-3-319-89800-1_2
. A connection between viscous profiles and singular ODEs. Rend. Istit. Mat. Univ. Trieste 41 (2009) 35-41 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2555
. Transport Rays and Applications to Hamilton–Jacobi Equations. In: Nonlinear PDE’s and Applications : C.I.M.E. Summer School, Cetraro, Italy 2008 / Stefano Bianchini, Eric A. Carlen, Alexander Mielke, Cédric Villani. Eds. Luigi Ambrosio, Giuseppe Savaré. - Berlin : Springer, 2011. - (Lecture Notes in Mathematics ; 20. Nonlinear PDE’s and Applications : C.I.M.E. Summer School, Cetraro, Italy 2008 / Stefano Bianchini, Eric A. Carlen, Alexander Mielke, Cédric Villani. Eds. Luigi Ambrosio, Giuseppe Savaré. - Berlin : Springer, 2011. - (Lecture Notes in Mathematics ; 20. Springer; 2008. Available from: http://hdl.handle.net/1963/5463
. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. 161 (2005) 223-342 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3074
. . The Monge Problem in Geodesic Spaces. In: Nonlinear Conservation Laws and Applications. Nonlinear Conservation Laws and Applications. Boston, MA: Springer US; 2011. pp. 217–233.
. Quadratic interaction functional for systems of conservation laws: a case study. Bulletin of the Institute of Mathematics of Academia Sinica (New Series) [Internet]. 2014 ;9:487-546. Available from: https://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf
. On the Stability of the Standard Riemann Semigroup. P. Am. Math. Soc., 2002, 130, 1961 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1528
. A center manifold technique for tracing viscous waves. Commun. Pure Appl. Anal. 1 (2002) 161-190 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3075
. A uniqueness result for the decomposition of vector fields in Rd. SISSA; 2017. Available from: http://preprints.sissa.it/handle/1963/35274
. On the extremality, uniqueness and optimality of transference plans. Bull. Inst. Math. Acad. Sin. (N.S.) 4 (2009) 353-458 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3692
. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S [Internet]. 2016 ;9:73. Available from: http://aimsciences.org//article/id/ce4eb91e-9553-4e8d-8c4c-868f07a315ae
. A Lagrangian approach for scalar multi-d conservation laws.; 2017. Available from: http://preprints.sissa.it/handle/1963/35290
. Extremal faces of the range of a vector measure and a theorem of Lyapunov. J. Math. Anal. Appl. 231 (1999) 301-318 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3370
. Characteristic boundary layers for mixed hyperbolic systems in one space dimension and applications to the Navier-Stokes and MHD equations. SISSA; 2018. Available from: http://preprints.sissa.it/handle/1963/35325
. Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions. SIAM Journal on Mathematical Analysis [Internet]. 2016 ;48:1-33. Available from: https://doi.org/10.1137/15M1007380
. Existence and blow-up for non-autonomous scalar conservation laws with viscosity. Journal of Mathematical Analysis and Applications [Internet]. 2025 ;542:128761. Available from: https://www.sciencedirect.com/science/article/pii/S0022247X24006838
. SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
. Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60 (2007) 1559-1622 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1780
. An Estimate on the Flow Generated by Monotone Operators. Communications in Partial Differential Equations 36 (2011) 777-796 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3646
. On the structure of $L^\infty$-entropy solutions to scalar conservation laws in one-space dimension. SISSA; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35209
. SBV Regularity of Systems of Conservation Laws and Hamilton–Jacobi Equations. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34691
. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Systems 6 (2000), no. 2, 329-350 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1274
. Quadratic Interaction Functional for General Systems of Conservation Laws. Communications in Mathematical Physics. 2015 ;338:1075–1152.
.