On a Lyapunov functional relating shortening curves and viscous conservation laws. Nonlinear Anal. 51 (2002) 649-662 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1337
. Quadratic interaction functional for systems of conservation laws: a case study. Bulletin of the Institute of Mathematics of Academia Sinica (New Series) [Internet]. 2014 ;9:487-546. Available from: https://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf
. On Bressan\\\'s conjecture on mixing properties of vector fields. Self-Similar Solutions of Nonlinear PDE / Ed. Piotr Biler and Grzegorz Karch. - Banach Center Publ. 74 (2006) 13-31 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1806
. Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60 (2007) 1559-1622 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1780
. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Systems 6 (2000), no. 2, 329-350 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1274
. . SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension. Rend. Istit. Mat. Univ. Trieste. 2012 ;44:439–472.
. On the Euler-Lagrange equation for a variational problem. Discrete Contin. Dynam. Systems A 17 (2007) 449-480 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1792
. On the structure of $L^\infty$-entropy solutions to scalar conservation laws in one-space dimension. SISSA; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35209
. SBV Regularity of Systems of Conservation Laws and Hamilton–Jacobi Equations. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34691
. A Decomposition Theorem for BV functions. Communications on Pure and Applied Analysis [Internet]. 2011 ;10(6):1549-1566. Available from: http://hdl.handle.net/20.500.11767/14599
. Invariant manifolds for a singular ordinary differential equation. Journal of Differential Equations 250 (2011) 1788-1827 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/2554
. The boundary Riemann solver coming from the real vanishing viscosity approximation. Arch. Ration. Mech. Anal. 191 (2009) 1-96 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/1831
. BV solutions for a class of viscous hyperbolic systems. Indiana Univ. Math. J. 49 (2000) 1673-1714 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3194
. Global Structure of Admissible BV Solutions to Piecewise Genuinely Nonlinear, Strictly Hyperbolic Conservation Laws in One Space Dimension. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34694
. SBV regularity for Hamilton-Jacobi equations in R^n. Arch. Rational Mech. Anal. 200 (2011) 1003-1021 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4911
. Quadratic Interaction Functional for General Systems of Conservation Laws. Communications in Mathematical Physics. 2015 ;338:1075–1152.
. SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
. Invariant Manifolds for Viscous Profiles of a Class of Mixed Hyperbolic-Parabolic Systems.; 2008. Available from: http://hdl.handle.net/1963/3400
. SBV regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t,x). Siam Journal on Mathematical Analysis [Internet]. 2012 ;44(3):2179-2203. Available from: http://hdl.handle.net/20.500.11767/14066
. A uniqueness result for the decomposition of vector fields in Rd. SISSA; 2017. Available from: http://preprints.sissa.it/handle/1963/35274
. A Lagrangian approach for scalar multi-d conservation laws.; 2017. Available from: http://preprints.sissa.it/handle/1963/35290
. The vector measures whose range is strictly convex. J. Math. Anal. Appl. 232 (1999) 1-19 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3546
. On the Euler-Lagrange equation for a variational problem : the general case II. Math. Z. 265 (2010) 889-923 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2551
. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
.