The relative heat content for submanifolds in sub-Riemannian geometry. Actes du séminaire Théorie Spectrale et Géométrie. 2021 ;36.
. Relative heat content asymptotics in sub-Riemannian manifolds. Analysis & PDE [Internet]. 2024 . Available from: https://doi.org/10.2140/apde.2024.17.2997
. Relative heat content asymptotics for sub-Riemannian manifolds. Analysis & PDE [Internet]. 2024 ;17:2997–3037. Available from: http://dx.doi.org/10.2140/apde.2024.17.2997
. Regularity properties of optimal trajectories of single-input control systems in dimension three. Journal of Mathematical Sciences 126 (2005) 1561-1573 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4794
. On the regularity of weak solutions to H-systems. Atti .Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18 (2007) 209-219 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1753
. . Regularity of a vector potential problem and its spectral curve. J. Approx. Theory [Internet]. 2009 ;161:353–370. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2008.10.010
. Regularity estimates for scalar conservation laws in one space dimension.; 2017. Available from: http://preprints.sissa.it/handle/1963/35291
. Regularity estimates for scalar conservation laws in one space dimension. Journal of Hyperbolic Differential Equations [Internet]. 2018 ;15:623-691. Available from: https://doi.org/10.1142/S0219891618500200
. Regular Synthesis and Sufficiency Conditions for Optimality. SIAM J. Control Optim. 39 (2000) 359-410 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3213
. Reflection symmetries for multiqubit density operators. J. Math. Phys. 47 (2006) 032104 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2121
. Refined node polynomials via long edge graphs. Communications in Number Theory and Physics [Internet]. 2016 ;10:193–234. Available from: http://dx.doi.org/10.4310/CNTP.2016.v10.n2.a2
. The reductions of the dispersionless 2D Toda hierarchy and their Hamiltonian structures. J. Phys. A 43 (2010) 045201 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3846
. On the reductions and classical solutions of the Schlesinger equations. Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys. 9 (2007) 157-187 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/6472
. . Reduction strategies for PDE-constrained oprimization problems in Haemodynamics. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) J. Eberhardsteiner et.al. (eds.), Vienna, Austria, 10-14 sept. 2012 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6338
. Reduction on characteristics for continuous of a scalar balance law. In: AIMS Series on Applied Mathematics, vol. 8 (2014): 399 - 406. AIMS Series on Applied Mathematics, vol. 8 (2014): 399 - 406. SISSA; 2014. Available from: http://hdl.handle.net/1963/6562
. Reduction of bi-Hamiltonian systems and separation of variables: an example from the Boussinesq hierarchy. Theor. Math. Phys. 122 (2000) 176-192 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3219
. Reduction by group symmetry of second order variational problems on a semidirect product of Lie groups with positive definite Riemannian metric. ESAIM: COCV 10 (2004) 526-548 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/3521
. Reducibility of Klein-Gordon equations with maximal order perturbations. [Internet]. 2024 . Available from: https://arxiv.org/abs/2402.11377
. Reducibility of first order linear operators on tori via Moser's theorem. Journal of Functional Analysis [Internet]. 2019 ;276:932 - 970. Available from: http://www.sciencedirect.com/science/article/pii/S0022123618303793
. Reducibility for a linear wave equation with Sobolev smooth fast driven potential. Discr. Cont. Dyn. Syst. [Internet]. 2023 ;43(9):3251–3285. Available from: https://doi.org/10.3934/dcds.2023047
. Reducibility for a fast-driven linear Klein–Gordon equation. [Internet]. 2019 ;198(4):1407 - 1439. Available from: https://doi.org/10.1007/s10231-019-00823-2
. . .