MENU

You are here

Publications

Export 1845 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Devaud D, Rozza G. Reduced Basis Approximation for the Structural-Acoustic Design based on Energy Finite Element Analysis (RB-EFEA). In: CEMRACS 2013 - Modelling and simulation of complex systems: stochastic and deterministic approaches. Vol. 48. CEMRACS 2013 - Modelling and simulation of complex systems: stochastic and deterministic approaches. ; 2013. pp. 98-115.
Martini I, Rozza G, Haasdonk B. Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics. 2015 ;special issue for MoRePaS 2012(in press).
Rozza G, Huynh P, Manzoni A. Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numerische Mathematik, 2013 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6339
Huynh DBP, Pichi F, Rozza G. Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings. In: Numerical Methods for PDEs. Vol. 15. Numerical Methods for PDEs. ; 2018. Available from: https://link.springer.com/chapter/10.1007/978-3-319-94676-4_8
Huynh DBP, Pichi F, Rozza G. Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings. SEMA SIMAI Springer Series [Internet]. 2018 ;15:203-247. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055036627&doi=10.1007%2f978-3-319-94676-4_8&partnerID=40&md5=e9c07038e7bcc6668ec702c0653410dc
Sartori A, Cammi A, Luzzi L, Rozza G. Reduced basis approaches in time-dependent noncoercive settings for modelling the movement of nuclear reactor control rods. Communications in Computational Physics [Internet]. 2016 ;(in press). Available from: http://urania.sissa.it/xmlui/handle/1963/34963
Pichi F, Rozza G. Reduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations. Journal of Scientific Computing [Internet]. 2019 ;81:112-135. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068973907&doi=10.1007%2fs10915-019-01003-3&partnerID=40&md5=a09af83ce45183d6965cdb79d87a919b
Pichi F, Rozza G. Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations. [Internet]. 2019 ;81:112–135. Available from: https://arxiv.org/abs/1804.02014
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;347:568-587. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060107322&doi=10.1016%2fj.cma.2018.12.040&partnerID=40&md5=1a3234f0cb000c91494d946428f8ebef
Sartori A, Cammi A, Luzzi L, Rozza G. A Reduced Basis Approach for Modeling the Movement of Nuclear Reactor Control Rods. NERS-14-1062; ASME J of Nuclear Rad Sci, 2, 2 (2016) 021019 [Internet]. 2016 ;2(2):8. Available from: http://urania.sissa.it/xmlui/handle/1963/35192
Dubrovin B, Maltsev AYa A. Recurrent procedure for the determination of the free energy ε^2 expansion in the topological string theory. SISSA; 1999. Available from: http://hdl.handle.net/1963/6489
De Masi L. Rectifiability of the free boundary for varifolds. Indiana Univ. Math. J. 2021 ;70:2603–2651.
Gigli N, Rigoni C. Recognizing the flat torus among RCD*(0,N) spaces via the study of the first cohomology group. Calculus of Variations and Partial Differential Equations [Internet]. 2018 ;57:104. Available from: https://doi.org/10.1007/s00526-018-1377-z
Abenda S, Grava T. Reciprocal transformations and flat metrics on Hurwitz spaces. J. Phys. A 40 (2007) 10769-10790 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2210
DeSimone A, Kohn RV, Müller S, Otto F. Recent analytical developments in micromagnetics. In: The science of hysteresis / eds. Giorgio Bertotti, Isaak D. Mayergoyz. - Amsterdam: Elsevier, 2006. Vol.2, 269-381. The science of hysteresis / eds. Giorgio Bertotti, Isaak D. Mayergoyz. - Amsterdam: Elsevier, 2006. Vol.2, 269-381. ; 2006. Available from: http://hdl.handle.net/1963/2230
Ambrosetti A. Recent advances in the study of the existence of periodic orbits of Hamiltonian systems. Advances in Hamiltonian systems (Rome, 1981), 1--22, Ann. CEREMADE, Birkhauser Boston, Boston, MA, 1983. [Internet]. 1981 . Available from: http://hdl.handle.net/1963/159
Narain KS, Piazzalunga N, Tanzini A. Real topological string amplitudes. Journal of High Energy Physics [Internet]. 2017 ;2017:80. Available from: https://doi.org/10.1007/JHEP03(2017)080
Michelangeli A, Scandone R. On real resonances for the three-dimensional, multi-centre point interaction.; 2018.
Beltrán C, Kozhasov K. The Real Polynomial Eigenvalue Problem is Well Conditioned on the Average. Foundations of Computational Mathematics [Internet]. 2019 . Available from: https://doi.org/10.1007/s10208-019-09414-2
Altafini C. The reachable set of a linear endogenous switching system. Systems Control Lett. 47 (2002) 343-353 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3142
Bicchi A, Marigo A, Piccoli B. On the reachability of quantized control systems. IEEE Trans. Automat. Contr. 47 (2002) 546-563 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1501
Marigo A, Piccoli B, Bicchi A. Reachability Analysis for a Class of Quantized Control Systems. In: Proc. 39th IEEE Int. Conf. on Decision and Control 4 (2000) 3963-3968. Proc. 39th IEEE Int. Conf. on Decision and Control 4 (2000) 3963-3968. IEEE; 2000. Available from: http://hdl.handle.net/1963/3518
Riccobelli D, Ciarletta P. Rayleigh–Taylor instability in soft elastic layers. Phil. Trans. R. Soc. A. 2017 ;375.
Sanna G. Rational curves and instantons on the Fano threefold Y_5. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/7482
Lazzaroni G, Rossi R, Thomas M, Toader R. Rate-independent damage in thermo-viscoelastic materials with inertia. SISSA; 2014. Available from: http://urania.sissa.it/xmlui/handle/1963/7444

Pages

Sign in