Exact results for N=2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants. Journal of High Energy Physics [Internet]. 2016 ;2016:23. Available from: https://doi.org/10.1007/JHEP07(2016)023
. Exact results for N=2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants. Journal of High Energy Physics [Internet]. 2016 ;2016:23. Available from: https://doi.org/10.1007/JHEP07(2016)023
. Existence and non-existence results for the SU(3) singular Toda system on compact surfaces. Journal of Functional Analysis [Internet]. 2016 ;270:3750 - 3807. Available from: http://www.sciencedirect.com/science/article/pii/S0022123615004942
. A fast virtual surgery platform for many scenarios haemodynamics of patient-specific coronary artery bypass grafts. Submitted; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35240
. The Gysin sequence for quantum lens spaces. Journal of Noncommutative Geometry. 2016 ;9:1077–1111.
. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
. Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes. Springer, AMOS Advanced Modelling and Simulation in Engineering Sciences; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35199
. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
. KAM for PDEs. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:115–142. Available from: https://doi.org/10.1007/s40574-016-0067-z
. LinearOperator – a generic, high-level expression syntax for linear algebra. COMPUTERS & MATHEMATICS WITH APPLICATIONS. 2016 ;72:1–24.
. Moser–Trudinger inequalities for singular Liouville systems. Mathematische Zeitschrift [Internet]. 2016 ;282:1169–1190. Available from: https://doi.org/10.1007/s00209-015-1584-7
. Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case. Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), 449–474. [Internet]. 2016 . Available from: http://urania.sissa.it/xmlui/handle/1963/35262
. POD–Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems. International Journal Numerical Methods for Fluids. 2016 .
. Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions. SIAM Journal on Mathematical Analysis [Internet]. 2016 ;48:1-33. Available from: https://doi.org/10.1137/15M1007380
. Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions. SIAM Journal on Mathematical Analysis [Internet]. 2016 ;48:1-33. Available from: https://doi.org/10.1137/15M1007380
. Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation. Proc. A. [Internet]. 2016 ;472:20160340, 12. Available from: http://dx.doi.org/10.1098/rspa.2016.0340
. Second-order structured deformations. SISSA; 2016.
. Simple Lie Algebras and Topological ODEs. Int. Math. Res. Not. 2016 ;2016.
. On Sobolev instability of the interior problem of tomography. Journal of Mathematical Analysis and Applications. 2016 .
. Spectral analysis and the Aharonov-Bohm effect on certain almost-Riemannian manifolds. Communications in Partial Differential Equations [Internet]. 2016 ;41:32-50. Available from: https://doi.org/10.1080/03605302.2015.1095766
.