Quasistatic crack growth in finite elasticity with Lipschitz data. {ANNALI DI MATEMATICA PURA ED APPLICATA}. 2011 ;{190}:{165-194}.
. Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867-906 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2964
. Quasistatic crack growth for a cohesive zone model with prescribed crack path.; 2007. Available from: http://hdl.handle.net/1963/1686
. Quasistatic crack growth based on viscous approximation: a model with branching and kinking. Nonlinear Differential Equations and Applications NoDEA [Internet]. 2017 ;24:7. Available from: https://doi.org/10.1007/s00030-016-0426-6
. Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach. ESAIM: COCV 17 (2011) 1-27 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/2355
. Quasi-periodic water waves. J. Fixed Point Theory Appl. [Internet]. 2017 ;19:129–156. Available from: https://doi.org/10.1007/s11784-016-0375-z
. Quasi-periodic standing wave solutions of gravity-capillary water waves. Mem. Amer. Math. Soc. [Internet]. 2020 ;263:v+171. Available from: https://doi.org/10.1090/memo/1273
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Quasi-periodic solutions of PDEs. In: Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. École Polytech., Palaiseau; 2013. p. Exp. No. XXX, 11.
. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
. Quasi-periodic solutions of nonlinear Schrödinger equations on $\Bbb T^d$. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2011 ;22:223–236. Available from: https://doi.org/10.4171/RLM/597
. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations [Internet]. 2006 ;31:959–985. Available from: https://doi.org/10.1080/03605300500358129
. Quasi-periodic solutions for quasi-linear generalized KdV equations. Journal of Differential Equations [Internet]. 2017 ;262:5052 - 5132. Available from: http://www.sciencedirect.com/science/article/pii/S0022039617300487
. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2005 ;16:109–116.
. Quasi-optimal mesh sequence construction through Smoothed Adaptive Finite Element Methods. SIAM Journal on Scientific Computing. 2021 .
. Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications. Journal of the Mechanics and Physics of Solids 59 (2011) 787-803 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4065
. . . Quantum Systems at The Brink. Existence and Decay Rates of Bound States at Thresholds; Atoms. arXiv:1908.05016. 2019 :14.
. Quantum Systems at The Brink. Existence and Decay Rates of Bound States at Thresholds; Critical Potentials and dimensionality. arXiv:2107.14128. 2021 :8.
. Quantum Systems at The Brink. Existence and Decay Rates of Bound States at Thresholds; Helium. arXiv:1908.04883. 2019 :25.
. Quantum spin coverings and statistics. J. Phys. A 36 (2003), no. 13, 3829-3840 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1667
. Quantum Spacetime: a Disambiguation.; 2010. Available from: http://hdl.handle.net/1963/3864
. Quantum mechanics and stochastic mechanics for compatible observables at different times. Ann.Physics 296 (2002), no.2, 371 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1577
. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4906
.