Quantum homogeneous spaces at roots of unity. In: Quantization, Coherent States and Poisson Structures, Proc. XIVth Workshop on Geometric Methods in Physics, Bialowieza, Poland, 9-15 July 1995, eds. A. Strasburger,\\nS.T. Ali, J.-P. Antoine, J.-P. Gazeau , A. Odzijewicz, Polish Scientific Publisher PWN 1. Quantization, Coherent States and Poisson Structures, Proc. XIVth Workshop on Geometric Methods in Physics, Bialowieza, Poland, 9-15 July 1995, eds. A. Strasburger,\\nS.T. Ali, J.-P. Antoine, J.-P. Gazeau , A. Odzijewicz, Polish Scientific Publisher PWN 1. SISSA Library; 1995. Available from: http://hdl.handle.net/1963/1022
. Quantum Hitchin Systems via beta-deformed Matrix Models. SISSA; 2011. Available from: http://hdl.handle.net/1963/4181
. Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators. Commun. Math. Phys. 308 (2011) 567-589 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5203
. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34897
. Quantum dimension and quantum projective spaces. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34764
. Quantized control systems and discrete nonholonomy. Lagrangian and Hamiltonian Methods for Nonlinear Control : a proc. volume from the IFAC Workshop. Princeton, New Jersey, 16-18 March 2000 / ed. by N.E. Leonard, R. Ortega. - Oxford : Pergamon, 2000 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1502
. Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants. Ann. Fenn. Math. 2021 ;46:1071–1087.
. Quantitative approximate definable choices. [Internet]. 2024 . Available from: https://arxiv.org/abs/2409.14869
. Quantisation of bending flows. Czechoslovak Journal of Physics 56 (2006), n. 10-11, 1143-1148 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2537
. . Quadratic life span of periodic gravity-capillary water waves. Water Waves [Internet]. 2021 ;3:85–115. Available from: https://doi.org/10.1007/s42286-020-00036-8
. Quadratic interaction functional for systems of conservation laws: a case study. Bulletin of the Institute of Mathematics of Academia Sinica (New Series) [Internet]. 2014 ;9:487-546. Available from: https://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf
. Quadratic Interaction Functional for General Systems of Conservation Laws. Communications in Mathematical Physics. 2015 ;338:1075–1152.
. Quadratic interaction estimate for hyperbolic conservation laws, an overview. Contemporary Mathematics. Fundamental Directions. 2016 ;59:148–172.
. A quadratic interaction estimate for conservation laws: motivations, techniques and open problems. Bulletin of the Brazilian Mathematical Society, New Series [Internet]. 2016 ;47:589–604. Available from: https://doi.org/10.1007/s00574-016-0171-9
. On a quadratic functional for scalar conservation laws. Journal of Hyperbolic Differential Equations [Internet]. 2014 ;11(2):355-435. Available from: http://arxiv.org/abs/1311.2929
. Quadratic forms for singular perturbations of the Laplacian. Publ. Res. Inst. Math. Sci. 26 (1990), no. 5, 803--817 [Internet]. 1990 . Available from: http://hdl.handle.net/1963/757
. Quadratic cohomology. 2013 .
. Q-factorial Laurent rings. SISSA; 2011. Available from: http://hdl.handle.net/1963/4183
. Q-curvature flow on S^4. J. Differential Geom. 73 (2006) 1-44 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2193
. PyGeM: Python Geometrical Morphing. Software Impacts. 2021 ;7:100047.
. PyDMD: Python Dynamic Mode Decomposition. The Journal of Open Source Software [Internet]. 2018 ;3:530. Available from: https://joss.theoj.org/papers/734e4326edd5062c6e8ee98d03df9e1d
. Pure gravity traveling quasi-periodic water waves with constant vorticity. Comm. Pure Appl. Math. [Internet]. 2024 ;77:990–1064. Available from: https://doi.org/10.1002/cpa.22143
. Pseudo-automorphisms of positive entropy on the blowups of products of projective spaces. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34714
. Properties of Mixing BV Vector Fields. Communications in Mathematical Physics [Internet]. 2023 ;402:1953–2009. Available from: https://doi.org/10.1007%2Fs00220-023-04780-z
.