MENU

You are here

Publications

Export 690 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
Journal Article
Bressan A, Colombo RM. Unique solutions of 2x2 conservation laws with large data. Indiana Univ. Math. J. 44 (1995), no. 3, 677-725 [Internet]. 1995 . Available from: http://hdl.handle.net/1963/975
Bressan A, Lewicka M. A Uniqueness Condition for Hyperbolic Systems of Conservation Laws. Discrete Contin. Dynam. Systems 6 (2000) 673-682 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3195
Bressan A, Shen W. Uniqueness for discontinuous ODE and conservation laws. Nonlinear Analysis 34 (1998) 637-652 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3699
Baiti P, LeFloch PG, Piccoli B. Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems. J. Differential Equations 172 (2001) 59-82 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3113
Alberti G, Bianchini S, Crippa G. A uniqueness result for the continuity equation in two dimensions: dedicated to constantine dafermos on the occasion of his 70th birthday. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34692
Bertola M, Bothner T. Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices. Commun. Math. Phys. [Internet]. 2015 ;337:1077–1141. Available from: http://link.springer.com/article/10.1007/s00220-015-2327-7
Bertola M, Bothner T. Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices. Commun. Math. Phys. [Internet]. 2015 ;337:1077–1141. Available from: http://link.springer.com/article/10.1007/s00220-015-2327-7
Bertola M, Tovbis A. Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the \it Tritronquée solution to Painlevé I. Comm. Pure Appl. Math. [Internet]. 2013 ;66:678–752. Available from: http://dx.doi.org/10.1002/cpa.21445
Bertola M, Tovbis A. Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. IMRN [Internet]. 2010 :2119–2167. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1093/imrn/rnp196
Bertola M, Cafasso M. Universality of the matrix Airy and Bessel functions at spectral edges of unitary ensembles. Random Matrices Theory Appl. [Internet]. 2017 ;6:1750010, 22. Available from: http://dx.doi.org/10.1142/S2010326317500101
Tikan A, Billet C, El G, Tovbis A, Bertola M, Sylvestre T, Gustave F, Randoux S, Genty G, Suret P, et al. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation. Phys. Rev. Lett. [Internet]. 2017 ;119:033901. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.119.033901
Tikan A, Billet C, El G, Tovbis A, Bertola M, Sylvestre T, Gustave F, Randoux S, Genty G, Suret P, et al. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation. Phys. Rev. Lett. [Internet]. 2017 ;119:033901. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.119.033901
Bressan A, Cellina A, Colombo G. Upper semicontinuous differential inclusions without convexity. Proc. Amer. Math. Soc. 106 (1989), no. 3, 771-775 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/670
Bianchini S, Bressan A. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
Bianchini S, Bressan A. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
Bianchini S, Bressan A. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. 161 (2005) 223-342 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3074
Bianchini S, Bressan A. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. 161 (2005) 223-342 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3074
Berti M, Bolle P. Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1998 ;9:167–175.
Berti M, Bolle P. Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1998 ;9:167–175.
Braides A, Dal Maso G, Garroni A. Variational formulation of softening phenomena in fracture mechanics. The one-dimensional case. Arch. Ration. Mech. Anal. 146 (1999), no. 1, 23--58 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3371
Berti M. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
Bianchini S, Mariconda C. The vector measures whose range is strictly convex. J. Math. Anal. Appl. 232 (1999) 1-19 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3546
Bonelli G, Tanzini A, Jian Z. Vertices, vortices & interacting surface operators. JHEP 06(2012)178 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4134
Agrachev AA, Barilari D, Paoli E. Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. arXiv preprint arXiv:1602.08745. 2016 .
Bonelli G, Sciarappa A, Tanzini A, Vasko P. Vortex Partition Functions, Wall Crossing and Equivariant Gromov–Witten Invariants. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34652

Pages

Sign in