MENU

You are here

Publications

Export 1845 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
F
Antonić N, Erceg M, Michelangeli A. Friedrichs systems in a Hilbert space framework: solvability and multiplicity.; 2017. Available from: http://preprints.sissa.it/handle/1963/35280
Raimondo A. Frobenius manifold for the dispersionless Kadomtsev-Petviashvili equation. Communications in Mathematical Physics 311 (2012) 557-594 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6040
Bertola M. Frobenius manifold structure on orbit space of Jacobi groups. I. Differential Geom. Appl. 2000 ;13:19–41.
Bertola M. Frobenius manifold structure on orbit space of Jacobi groups. II. Differential Geom. Appl. 2000 ;13:213–233.
Dubrovin B, Si-Qi L, Youjin Z. Frobenius Manifolds and Central Invariants for the Drinfeld - Sokolov Bihamiltonian Structures. Adv. Math. 219 (2008) 780-837 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2523
Dubrovin B, Youjin Z. Frobenius manifolds and Virasoro constraints. Selecta Math. (N.S.) 5 (1999) 423-466 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/2883
Luzzatto S, Türeli S, War KMbacke. A Frobenius theorem for corank-1 continuous distributions in dimensions two and three. International Journal of Mathematics [Internet]. 2016 ;27:1650061. Available from: https://doi.org/10.1142/S0129167X16500610
Rizzi M, Polini M, Cazalilla MA, Bakhtiari MR, Tosi MP, Fazio R. Fulde-Ferrell-Larkin-Ovchinnikov pairing in one-dimensional optical lattices. Phys. Rev. B 77 (2008) 245105 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2694
Berti M, Maspero A, Ventura P. Full description of Benjamin-Feir instability of Stokes waves in deep water. Invent. Math. [Internet]. 2022 ;230:651–711. Available from: https://doi.org/10.1007/s00222-022-01130-z
Heltai L, Roy S, Costanzo F. A Fully Coupled Immersed Finite Element Method for Fluid Structure Interaction via the Deal.II Library. SISSA; 2012. Available from: http://hdl.handle.net/1963/6255
Mola A, Heltai L, DeSimone A. A fully nonlinear potential model for ship hydrodynamics directly interfaced with CAD data structures. Proceedings of the 24th International Ocean and Polar Engineering Conference, Busan, 2014. 2014 .
Kozhasov K. On fully real eigenconfigurations of tensors. SIAM Journal on Applied Algebra and Geometry [Internet]. 2018 ;2:339–347. Available from: https://epubs.siam.org/doi/pdf/10.1137/17M1145902
Berti M. A functional analysis approach to Arnold diffusion. In: Symmetry and perturbation theory (Cala Gonone, 2001). Symmetry and perturbation theory (Cala Gonone, 2001). World Sci. Publ., River Edge, NJ; 2001. pp. 29–31. Available from: https://doi.org/10.1142/9789812794543_0004
Berti M, Bolle P. A functional analysis approach to Arnold diffusion. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2002 ;19:395–450. Available from: https://doi.org/10.1016/S0294-1449(01)00084-1
Mora MG, Morini M. Functionals depending on curvatures with constraints. Rend. Sem. Mat. Univ. Padova 104 (2000), 173--199 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1299
Dubrovin B. Functionals of the Peierls - Fröhlich Type and the Variational Principle for the Whitham Equations. In: Solitons, geometry, and topology : on the crossroad / V. M. Buchstaber, S. P. Novikov editors.- Providence : American Mathematical Society, 1997. - ( American mathematical society translations. Series 2. - vol. 179). - pages : 35-44. Solitons, geometry, and topology : on the crossroad / V. M. Buchstaber, S. P. Novikov editors.- Providence : American Mathematical Society, 1997. - ( American mathematical society translations. Series 2. - vol. 179). - pages : 35-44. American Mathematical Society; 1997. Available from: http://hdl.handle.net/1963/6485
Klun G. On functions having coincident p-norms. Annali di Matematica Pura ed Applicata (1923 -) [Internet]. 2020 ;199:955-968. Available from: https://doi.org/10.1007/s10231-019-00907-z
Zelenko I. Fundamental form and Cartan tensor of (2,5)-distributions coincide. J. Dyn. Control Syst. 12 (2006) 247-276 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2187
Rozza G. Fundamentals of Reduced Basis Method for problems governed by parametrized PDEs and applications. In: Separated representations and PGD-based model reduction : fundamentals and applications. Vol. 554. Separated representations and PGD-based model reduction : fundamentals and applications. Wien: Springer; 2014.
G
Ansini N, Dal Maso G, Zeppieri CI. Gamma-convergence and H-convergence of linear elliptic operators. Journal de Mathématiques Pures et Appliquées, Available online 12 September 2012 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5878
Agostiniani V, DeSimone A. Gamma-convergence of energies for nematic elastomers in the small strain limit. Continuum. Mech. Therm. [Internet]. 2011 ; 23. Available from: http://hdl.handle.net/1963/4141
Cagnetti F, Dal Maso G, Scardia L, Zeppieri CI. Gamma-Convergence of Free-discontinuity problems. SISSA; 2017. Available from: http://preprints.sissa.it/handle/1963/35276
Dal Maso G, Trebeschi P. Gamma-limit of periodic obstacles. Acta Appl. Math., 2001, 65, 207-215 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1495
Bertola M, Cafasso M. The gap probabilities of the tacnode, Pearcey and Airy point processes, their mutual relationship and evaluation. Random Matrices: Theory and Applications [Internet]. 2013 ;02:1350003. Available from: http://www.worldscientific.com/doi/abs/10.1142/S2010326313500032
Falqui G, Musso F. Gaudin models and bending flows: a geometrical point of view. J. Phys. A: Math. Gen. 36 (2003) 11655-11676 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/2884

Pages

Sign in