A functional analysis approach to Arnold diffusion. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2002 ;19:395–450. Available from: https://doi.org/10.1016/S0294-1449(01)00084-1
. Jacobi groups, Jacobi forms and their applications. In: Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Vol. 31. Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Providence, RI: Amer. Math. Soc.; 2002. pp. 99–111.
. On the K+P problem for a three-level quantum system: optimality implies resonance. J.Dynam. Control Systems 8 (2002),no.4, 547 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1601
. On a Lyapunov functional relating shortening curves and viscous conservation laws. Nonlinear Anal. 51 (2002) 649-662 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1337
. On a Lyapunov functional relating shortening curves and viscous conservation laws. Nonlinear Anal. 51 (2002) 649-662 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1337
. An optimal fast-diffusion variational method for non isochronous system. [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1579
. An optimal fast-diffusion variational method for non isochronous system. [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1579
. An optimal fast-diffusion variational method for non isochronous system. [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1579
. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. The passage from nonconvex discrete systems to variational problems in Sobolev spaces: the one-dimensional case. Proc. Steklov Inst. Math. 236 (2002) 395-414 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3130
. On the reachability of quantized control systems. IEEE Trans. Automat. Contr. 47 (2002) 546-563 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1501
. Relatively stable bundles over elliptic fibrations. Math. Nachr. 238 (2002) 23-36 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3132
. Relatively stable bundles over elliptic fibrations. Math. Nachr. 238 (2002) 23-36 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3132
. Stability of planar switched systems: the linear single input case. SIAM J. Control Optim. 41 (2002), no. 1, 89-112 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1529
. On the Stability of the Standard Riemann Semigroup. P. Am. Math. Soc., 2002, 130, 1961 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1528
. A case study in vanishing viscosity. Discrete Cont. Dyn. Syst. 7 (2001) 449-476 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3091
. A case study in vanishing viscosity. Discrete Cont. Dyn. Syst. 7 (2001) 449-476 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3091
. Complex Lagrangian embeddings of moduli spaces of vector bundles. Differential Geom. Appl. 14 (2001) 151-156 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/2885
. Extremal synthesis for generic planar systems. J. Dynam. Control Systems, 2001, 7, 209 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1503
. A Fourier transform for sheaves on real tori. I. The equivalence Sky(T)~ Loc (T). J. Geom. Phys. 39 (2001), no. 2, 174--182 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1526
. A functional analysis approach to Arnold diffusion. In: Symmetry and perturbation theory (Cala Gonone, 2001). Symmetry and perturbation theory (Cala Gonone, 2001). World Sci. Publ., River Edge, NJ; 2001. pp. 29–31. Available from: https://doi.org/10.1142/9789812794543_0004
. A Glimm type functional for a special Jin-Xin relaxation model. Ann. Inst. H. Poincare\\\' Anal. Non Lineaire 18 (2001), no. 1, 19-42 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1355
. Lie triple systems and warped products. Rend. Mat. Appl. (7). 2001 ;21:275–293.
.