Extremal synthesis for generic planar systems. J. Dynam. Control Systems, 2001, 7, 209 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1503
. A Fourier transform for sheaves on real tori. I. The equivalence Sky(T)~ Loc (T). J. Geom. Phys. 39 (2001), no. 2, 174--182 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1526
. A functional analysis approach to Arnold diffusion. In: Symmetry and perturbation theory (Cala Gonone, 2001). Symmetry and perturbation theory (Cala Gonone, 2001). World Sci. Publ., River Edge, NJ; 2001. pp. 29–31. Available from: https://doi.org/10.1142/9789812794543_0004
. A Glimm type functional for a special Jin-Xin relaxation model. Ann. Inst. H. Poincare\\\' Anal. Non Lineaire 18 (2001), no. 1, 19-42 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1355
. Lie triple systems and warped products. Rend. Mat. Appl. (7). 2001 ;21:275–293.
. Morse properties for the minimum time function on 2-D manifolds. J. Dynam. Control Systems 7 (2001), no. 3, 385--423 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1541
. On the Multi-Instanton Measure for Super Yang-Mills Theories. Nuclear Phys. B 611 (2001), no. 1-3, 205--226. [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1531
. Non-compactness and multiplicity results for the Yamabe problem on Sn. J. Funct. Anal. 180 (2001) 210-241 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1345
. Stability of L-infinity solutions for hyperbolic systems with coinciding shocks and rarefactions. Siam J. Math. Anal., 2001, 33, 959 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1523
. Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems. J. Differential Equations 172 (2001) 59-82 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3113
. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
. On the Boundary Control of Systems of Conservation Laws. SIAM J. Control Optim. 41 (2002) 607-622 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3070
. A center manifold technique for tracing viscous waves. Commun. Pure Appl. Anal. 1 (2002) 161-190 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3075
. A center manifold technique for tracing viscous waves. Commun. Pure Appl. Anal. 1 (2002) 161-190 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3075
. Chaotic dynamics for perturbations of infinite-dimensional Hamiltonian systems. Nonlinear Anal. 48 (2002) 481-504 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1279
. Coherent state realizations of $\rm su(n+1)$ on the $n$-torus. J. Math. Phys. 2002 ;43:3425–3444.
. Curvature theory of boundary phases: the two-dimensional case. Interfaces Free Bound. 7 (2002) 345-370 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3537
. Duality, biorthogonal polynomials and multi-matrix models. Comm. Math. Phys. 2002 ;229:73–120.
. Fast Arnold diffusion in systems with three time scales. Discrete Contin. Dyn. Syst. [Internet]. 2002 ;8:795–811. Available from: https://doi.org/10.3934/dcds.2002.8.795
. Fast Arnold diffusion in systems with three time scales. Discrete Contin. Dyn. Syst. [Internet]. 2002 ;8:795–811. Available from: https://doi.org/10.3934/dcds.2002.8.795
. Flow Stability of Patchy Vector Fields and Robust Feedback Stabilization. SIAM J. Control Optim. 41 (2002) 1455-1476 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3073
. A functional analysis approach to Arnold diffusion. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2002 ;19:395–450. Available from: https://doi.org/10.1016/S0294-1449(01)00084-1
. A functional analysis approach to Arnold diffusion. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2002 ;19:395–450. Available from: https://doi.org/10.1016/S0294-1449(01)00084-1
. Jacobi groups, Jacobi forms and their applications. In: Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Vol. 31. Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Providence, RI: Amer. Math. Soc.; 2002. pp. 99–111.
.