Relative heat content asymptotics for sub-Riemannian manifolds. Analysis & PDE [Internet]. 2024 ;17:2997–3037. Available from: http://dx.doi.org/10.2140/apde.2024.17.2997
. Relative heat content asymptotics in sub-Riemannian manifolds. Analysis & PDE [Internet]. 2024 . Available from: https://doi.org/10.2140/apde.2024.17.2997
. The relative heat content for submanifolds in sub-Riemannian geometry. Actes du séminaire Théorie Spectrale et Géométrie. 2021 ;36.
. Relatively stable bundles over elliptic fibrations. Math. Nachr. 238 (2002) 23-36 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3132
. Relaxation dynamics of fluid membranes. Phys. Rev. E 79 (2009) 031915 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3618
. Relaxation of some transversally isotropic energies and applications to smectic A elastomers. Math. Models Methods Appl. Sci. 18 (2008) 1-20 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1912
. . . . The relaxed area of $S^1$-valued singular maps in the strict $BV$-convergence. ESAIM: Control, Optimization and Calculus of Variations [Internet]. 2022 ;28:38. Available from: http://cvgmt.sns.it/paper/5440/
. On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions. Annali di Matematica Pura ed Applicata (1923 -) [Internet]. 2019 . Available from: https://doi.org/10.1007/s10231-019-00887-0
. A Remark on One-Dimensional Many-Body Problems with Point Interactions. Int. J. Mod. Phys. B 14 (2000) 721-727 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3214
. . A remark on vanishing geodesic distances in infinite dimensions. Proceedings of the American Mathematical Society [Internet]. 2020 ;148:3653–3656. Available from: http://dx.doi.org/10.1090/proc/14986
. Remarks on the Derivation of Gross-Pitaevskii Equation with Magnetic Laplacian. In: Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Cham: Springer International Publishing; 2017. pp. 257–266. Available from: https://doi.org/10.1007/978-3-319-58904-6_15
. Remarks on the Moser–Trudinger inequality. Advances in Nonlinear Analysis [Internet]. 2013 ;2(4):389-425. Available from: http://edoc.unibas.ch/43974/
. Renormalization analysis for degenerate ground states. J. Funct. Anal. [Internet]. 2018 ;275:103–148. Available from: https://doi.org/10.1016/j.jfa.2018.03.005
. Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions. SIAM Journal on Mathematical Analysis [Internet]. 2016 ;48:1-33. Available from: https://doi.org/10.1137/15M1007380
. Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 4, 741-808 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1236
. Representing multiqubit unitary evolutions via Stokes tensors. Phys. Rev. A 70 (2004) 032331 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2307
. The residual-free-bubble finite element method on anisotropic partitions. SIAM J. Numer. Anal. [Internet]. 2007 ;45:1654–1678. Available from: https://doi.org/10.1137/060658011
. Resonance and Landesman-Lazer conditions for first order systems in R^2. Le Matematiche. 2011 ;66:153–160.
. Resonance and rotation numbers for planar Hamiltonian systems: Multiplicity results via the Poincaré–Birkhoff theorem. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:4166 - 4185. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X11001817
. Resonance at the first eigenvalue for first-order systems in the plane: vanishing Hamiltonians and the Landesman-Lazer condition. Differential Integral Equations [Internet]. 2012 ;25:505–526. Available from: https://projecteuclid.org:443/euclid.die/1356012676
. Resonance of minimizers for n-level quantum systems with an arbitrary cost. ESAIM COCV 10 (2004) 593-614 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2910
.