You are here


Export 1772 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Musina R. Variational Problems with Obstructions. [Internet]. 1988 . Available from:
Bianchini S, Mariconda C. The vector measures whose range is strictly convex. J. Math. Anal. Appl. 232 (1999) 1-19 [Internet]. 1999 . Available from:
Cellina A, Zagatti S. A version of Olech\\\'s lemma in a problem of the calculus of variations. SIAM J. Control Optim. 32 (1994) 1114-1127 [Internet]. 1994 . Available from:
Bonelli G, Tanzini A, Jian Z. Vertices, vortices & interacting surface operators. JHEP 06(2012)178 [Internet]. 2012 . Available from:
Liu Z, McBride A, Saxena P, Heltai L, Qu Y, Steinmann P. Vibration Analysis of Piezoelectric Kirchhoff-Love shells based on Catmull-Clark Subdivision Surfaces. International Journal for Numerical Methods in Engineering. 2022 .
Dubrovin B, Youjin Z. Virasoro Symmetries of the Extended Toda Hierarchy. Comm. Math.\\nPhys. 250 (2004) 161-193. [Internet]. 2004 . Available from:
Cangiani A, Chatzipantelidis P, Diwan G, Georgoulis EH. Virtual element method for quasilinear elliptic problems. IMA Journal of Numerical Analysis [Internet]. 2019 ;40:2450-2472. Available from:
Cangiani A, Sutton OJ, Gyrya V, Manzini G. Virtual element methods for elliptic problems on polygonal meshes. In: Generalized barycentric coordinates in computer graphics and computational mechanics. Generalized barycentric coordinates in computer graphics and computational mechanics. CRC Press, Boca Raton, FL; 2018. pp. 263–279.
Crasta G, Piccoli B. Viscosity solutions and uniquenessfor systems of inhomogeneous balance laws. Discrete Contin. Dynam. Systems 3 (1997), no. 4, 477--5 [Internet]. 1997 . Available from:
Zagatti S. On viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 361 (2009) 41-59 [Internet]. 2009 . Available from:
Coclite GM, Risebro NH. Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 4 (2007) 771-795 [Internet]. 2007 . Available from:
Racca S. A Viscosity-driven crack evolution. Advances in Calculus of Variations 5 (2012) 433-483 [Internet]. 2012 . Available from:
Crismale V, Lazzaroni G. Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calculus of Variations and Partial Differential Equations [Internet]. 2016 ;55:17. Available from:
Agrachev AA, Barilari D, Paoli E. Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. arXiv preprint arXiv:1602.08745. 2016 .
Paoli E. Volume variation and heat kernel for affine control problems. 2015 .
Bonelli G, Sciarappa A, Tanzini A, Vasko P. Vortex Partition Functions, Wall Crossing and Equivariant Gromov–Witten Invariants. [Internet]. 2014 . Available from:
Bertola M, Gouthier D. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
Dal Maso G, Lucardesi I. The wave equation on domains with cracks growing on a prescribed path: existence, uniqueness, and continuous dependence on the data.; 2015. Available from:
Dubrovin B. WDVV equations and Frobenius manifolds. In: Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. SISSA; 2006. Available from:
Dal Maso G, De Giorgi E, Modica L. Weak convergence of measures on spaces of semicontinuous functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 79 (1985), no. 5, 98-106 [Internet]. 1985 . Available from:
Tasso E. Weak formulation of elastodynamics in domains with growing cracks. [Internet]. 2020 ;199(4):1571 - 1595. Available from:
Carlotto A, Malchiodi A. Weighted barycentric sets and singular Liouville equations on compact surfaces. Journal of Functional Analysis 262 (2012) 409-450 [Internet]. 2012 . Available from:
Saracco G. Weighted Cheeger sets are domains of isoperimetry. Manuscripta Math. 2018 ;156:371–381.
Chen P, Quarteroni A, Rozza G. A weighted empirical interpolation method: A priori convergence analysis and applications. [Internet]. 2014 . Available from:
.Venturi L, Ballarin F, Rozza G. A Weighted POD Method for Elliptic PDEs with Random Inputs. Journal of Scientific Computing [Internet]. 2019 ;81:136-153. Available from:


Sign in