MENU

You are here

Publications

Export 1845 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Michelangeli A. Bose-Einstein condensation: analysis of problems and rigorous results.; 2007. Available from: http://hdl.handle.net/1963/2189
Michelangeli A. Born approximation in the problem of the rigorous derivation of the Gross-Pitaevskii equation.; 2006. Available from: http://hdl.handle.net/1963/1819
Franco D, Reina C. A Borel-Weil-Bott approach to representations of \rm sl\sb q(2,C). Lett. Math. Phys. 29 (1993) 215-217 [Internet]. 1993 . Available from: http://hdl.handle.net/1963/3538
Adami R, Dell'Antonio G, Figari R, Teta A. Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity. Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004) 121-137 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2998
Tasso E. On the blow-up of GSBV functions under suitable geometric properties of the jump set. Advances in Calculus of Variations [Internet]. 2020 . Available from: https://doi.org/10.1515/acv-2019-0068
Bressan A, Fonte M. On the Blow-up for a Discrete Boltzmann Equation in the Plane. Discrete Contin. Dyn. Syst. 13 (2005) 1-12 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2244
Jenssen HK, Sinestrari C. Blowup asymptotics for scalar conservation laws with a source. Comm. in Partial Differential Equations 24 (1999) 2237-2261 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3482
Gadalla M, Tezzele M, Mola A, Rozza G. BladeX: Python Blade Morphing. The Journal of Open Source Software. 2019 ;4:1203.
Giuliani N. BlackNUFFT: Modular customizable black box hybrid parallelization of type 3 NUFFT in 3D. Computer Physics Communications [Internet]. 2019 ;235:324 - 335. Available from: http://www.sciencedirect.com/science/article/pii/S0010465518303539
Griguolo L, Seminara D, Szabo RJ, Tanzini A. Black Holes, Instanton Counting on Toric Singularities and q-Deformed Two-Dimensional Yang-Mills Theory.; 2007. Available from: http://hdl.handle.net/1963/1888
Andreuzzi F. BisPy: Bisimulation in Python. Journal of Open Source Software. 2021 ;6:3519.
Agrachev AA, Lee P. Bishop and Laplacian Comparison Theorems on Three Dimensional Contact Subriemannian Manifolds with Symmetry. [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6508
Bambusi D, Berti M. A Birkhoff-Lewis-Type Theorem for Some Hamiltonian PDEs. SIAM J. Math. Anal. 37 (2006) 83-102 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2159
Berti M, Feola R, Pusateri F. Birkhoff normal form for gravity water waves. Water Waves [Internet]. 2021 ;3:117–126. Available from: https://doi.org/10.1007/s42286-020-00024-y
Berti M, Feola R, Pusateri F. Birkhoff normal form and long time existence for periodic gravity water waves. Comm. Pure Appl. Math. [Internet]. 2023 ;76:1416–1494. Available from: https://doi.org/10.1002/cpa.22041
Massarenti A. Biregular and Birational Geometry of Algebraic Varieties. 2013 .
Bertola M. Biorthogonal polynomials for two-matrix models with semiclassical potentials. J. Approx. Theory. 2007 ;144:162–212.
Bertola M, Gekhtman M. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 2007 ;26:383–430.
DeSimone A, Alouges F, Lefebvre A. Biological Fluid Dynamics, Non-linear Partial Differential Equations. In: Encyclopedia of Complexity and Systems Science / Robert A. Meyers (ed.). - Springer, 2009, 548-554. Encyclopedia of Complexity and Systems Science / Robert A. Meyers (ed.). - Springer, 2009, 548-554. ; 2009. Available from: http://hdl.handle.net/1963/2630
Bertola M. Bilinear semiclassical moment functionals and their integral representation. J. Approx. Theory. 2003 ;121:71–99.
Falqui G, Magri F, Pedroni M, Zubelli JP. A bi-Hamiltonian theory for stationary KDV flows and their separability. Regul. Chaotic Dyn. 5 (2000), no. 1, 33-52 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1352
Dubrovin B, Youjin Z. Bihamiltonian Hierarchies in 2D Topological Field Theory At One-Loop Approximation. Comm. Math. Phys. 198 (1998) 311-361 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3696
Falqui G, Magri F, Pedroni M. Bihamiltonian geometry and separation of variables for Toda lattices. J. Nonlinear Math. Phys. 8 (2001), suppl., 118-127 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1354
Falqui G, Magri F, Pedroni M. A bihamiltonian approach to separation of variables in mechanics. In: Proceedings of the workshop on nonlinearity, integrability and all that : twenty years after NEEDS \\\'79, Lecce, Italy, July 1 - 10, 1999 / ed. by M. Boiti. - Singapore : World Scientific, 2000. - p. 258-266. Proceedings of the workshop on nonlinearity, integrability and all that : twenty years after NEEDS \\\'79, Lecce, Italy, July 1 - 10, 1999 / ed. by M. Boiti. - Singapore : World Scientific, 2000. - p. 258-266. World Scientific; 1999. Available from: http://hdl.handle.net/1963/3222
Berti M, Bolle P. Bifurcation of free vibrations for completely resonant wave equations. Boll. Unione Mat. Ital. Sez. B 7 (2004) 519-528 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2245

Pages

Sign in