Export 479 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Homotopy properties of horizontal path spaces and a theorem of Serre in subriemannian geometry. Communications in Analysis and Geometry. 2017 ;25:269–301.
. Conformal Equivalence of 3D Contact Structures on Lie Groups. Journal of Dynamical and Control Systems [Internet]. 2016 ;22:251–283. Available from: https://doi.org/10.1007/s10883-015-9273-8
. On semistable principal bundles over complex projective manifolds, II. Geom. Dedicata 146 (2010) 27-41 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3404
. On semistable principal bundles over a complex projective manifold. Int. Math. Res. Not. vol. 2008, article ID rnn035 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/3418
. Holomorphic Cartan geometry on manifolds with numerically effective tangent bundle. Differential Geometry and its Applications 29 (2011) 147-153 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3830
. Flutter instability in solids and structures, with a view on biomechanics and metamaterials. Proceedings of the Royal Society A [Internet]. 2023 ;479:20230523. Available from: https://royalsocietypublishing.org/doi/10.1098/rspa.2023.0523
. On the reachability of quantized control systems. IEEE Trans. Automat. Contr. 47 (2002) 546-563 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1501
. An optimal fast-diffusion variational method for non isochronous system. [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1579
. On the Euler-Lagrange equation for a variational problem. Discrete Contin. Dynam. Systems A 17 (2007) 449-480 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1792
. A note on singular limits to hyperbolic systems of conservation laws. Commun. Pure Appl. Ana., 2003, 2, 51-64 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1542
. On Sudakov's type decomposition of transference plans with norm costs. SISSA; 2013. Available from: http://hdl.handle.net/1963/7206
. A case study in vanishing viscosity. Discrete Cont. Dyn. Syst. 7 (2001) 449-476 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3091
. Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60 (2007) 1559-1622 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1780
. Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions. SIAM Journal on Mathematical Analysis [Internet]. 2016 ;48:1-33. Available from: https://doi.org/10.1137/15M1007380
. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
. Quadratic interaction functional for systems of conservation laws: a case study. Bulletin of the Institute of Mathematics of Academia Sinica (New Series) [Internet]. 2014 ;9:487-546. Available from: https://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf
. Invariant Manifolds for Viscous Profiles of a Class of Mixed Hyperbolic-Parabolic Systems.; 2008. Available from: http://hdl.handle.net/1963/3400
. Characteristic boundary layers for mixed hyperbolic systems in one space dimension and applications to the Navier-Stokes and MHD equations. SISSA; 2018. Available from: http://preprints.sissa.it/handle/1963/35325
. Glimm interaction functional for BGK schemes.; 2006. Available from: http://hdl.handle.net/1963/1770
. A Decomposition Theorem for BV functions. Communications on Pure and Applied Analysis [Internet]. 2011 ;10(6):1549-1566. Available from: http://hdl.handle.net/20.500.11767/14599
. Global Structure of Admissible BV Solutions to Piecewise Genuinely Nonlinear, Strictly Hyperbolic Conservation Laws in One Space Dimension. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34694
. An Estimate on the Flow Generated by Monotone Operators. Communications in Partial Differential Equations 36 (2011) 777-796 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3646
. Existence and blow-up for non-autonomous scalar conservation laws with viscosity. Journal of Mathematical Analysis and Applications [Internet]. 2025 ;542:128761. Available from: https://www.sciencedirect.com/science/article/pii/S0022247X24006838
. Extremal faces of the range of a vector measure and a theorem of Lyapunov. J. Math. Anal. Appl. 231 (1999) 301-318 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3370
. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S [Internet]. 2016 ;9:73. Available from: http://aimsciences.org//article/id/ce4eb91e-9553-4e8d-8c4c-868f07a315ae
.