MENU

You are here

Publications

Export 437 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Bianchini S, Mariconda C. The vector measures whose range is strictly convex. J. Math. Anal. Appl. 232 (1999) 1-19 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3546
Bianchini S. Perturbation techniques applied to the real vanishing viscosity approximation of an initial boundary value problem. SISSA; 2007. Available from: http://preprints.sissa.it/handle/1963/35315
Bianchini S, Yu L. SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension. Rend. Istit. Mat. Univ. Trieste. 2012 ;44:439–472.
Bianchini S, Caravenna L. On optimality of c-cyclically monotone transference plans. Comptes Rendus Mathematique 348 (2010) 613-618 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/4023
Bianchini S, Modena S. A New Quadratic Potential for Scalar Conservation Laws. Oberwolfach Reports. 2013 ;29.
Bianchini S. The semigroup generated by a Temple class system with non-convex flux function. Differential Integral Equations 13 (2000) 1529-1550 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3221
Bianchini S, Bonicatto P. Failure of the Chain Rule in the Non Steady Two-Dimensional Setting. In: Rassias TM Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg. Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg. Cham: Springer International Publishing; 2018. pp. 33–60. Available from: https://doi.org/10.1007/978-3-319-89800-1_2
Bianchini S, Bonicatto P, Marconi E. A Lagrangian approach for scalar multi-d conservation laws.; 2017. Available from: http://preprints.sissa.it/handle/1963/35290
Bianchini S, De Lellis C, Robyr R. SBV regularity for Hamilton-Jacobi equations in R^n. Arch. Rational Mech. Anal. 200 (2011) 1003-1021 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4911
Bianchini S, Tonon D. SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian. Journal of Mathematical Analysis and Applications [Internet]. 2012 ;391(1):190-208. Available from: http://hdl.handle.net/20.500.11767/13909
Bianchini S, Spinolo L. The boundary Riemann solver coming from the real vanishing viscosity approximation. Arch. Ration. Mech. Anal. 191 (2009) 1-96 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/1831
Bianchini S, Yu L. Structure of entropy solutions to general scalar conservation laws in one space dimension. Journal of Mathematical Analysis and Applications [Internet]. 2014 ;428(1):356-386. Available from: https://www.sciencedirect.com/science/article/pii/S0022247X15002218
Bianchini S, Cavalletti F. The Monge Problem in Geodesic Spaces. In: Bressan A, Chen G-QG, Lewicka M, Wang D Nonlinear Conservation Laws and Applications. Nonlinear Conservation Laws and Applications. Boston, MA: Springer US; 2011. pp. 217–233.
Bianchini S, Tonon D. SBV regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t,x). Siam Journal on Mathematical Analysis [Internet]. 2012 ;44(3):2179-2203. Available from: http://hdl.handle.net/20.500.11767/14066
Bianchini S, Gloyer M. On the Euler-Lagrange equation for a variational problem : the general case II. Math. Z. 265 (2010) 889-923 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2551
Bianchini S, Zizza M. Properties of Mixing BV Vector Fields. Communications in Mathematical Physics [Internet]. 2023 ;402:1953–2009. Available from: https://doi.org/10.1007%2Fs00220-023-04780-z
Bianchini S, Bressan A. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
Bianchini S, Modena S. Quadratic interaction functional for systems of conservation laws: a case study. Bulletin of the Institute of Mathematics of Academia Sinica (New Series) [Internet]. 2014 ;9:487-546. Available from: https://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf
Bianchini S. On Bressan\\\'s conjecture on mixing properties of vector fields. Self-Similar Solutions of Nonlinear PDE / Ed. Piotr Biler and Grzegorz Karch. - Banach Center Publ. 74 (2006) 13-31 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1806
Bianchini S, Colombo RM. On the Stability of the Standard Riemann Semigroup. P. Am. Math. Soc., 2002, 130, 1961 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1528
Bianchini S, Bonicatto P, Gusev NA. Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions. SIAM Journal on Mathematical Analysis [Internet]. 2016 ;48:1-33. Available from: https://doi.org/10.1137/15M1007380
Bianchini S, Yu L. Global Structure of Admissible BV Solutions to Piecewise Genuinely Nonlinear, Strictly Hyperbolic Conservation Laws in One Space Dimension. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34694
Bianchini S, Caravenna L. SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension. Communications in Mathematical Physics 313 (2012) 1-33 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4091
Bianchini S, Bressan A. A case study in vanishing viscosity. Discrete Cont. Dyn. Syst. 7 (2001) 449-476 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3091
Bianchini S, Gloyer M. An Estimate on the Flow Generated by Monotone Operators. Communications in Partial Differential Equations 36 (2011) 777-796 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3646

Pages

Sign in